• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A study of the dynamical signatures of star formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814372_sip1_m.pdf
    Size:
    5.802Mb
    Format:
    PDF
    Download
    Author
    Narayanan, Gopalakrishnan, 1966-
    Issue Date
    1997
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Walker, Christopher K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A multi-pronged study aimed at disentangling the kinematical signatures of the earliest stages of star formation is presented. Radiative transfer calculations of millimeter and submillimeter molecular line emission from fully three-dimensional models of protostars are reported. These models are compared with detailed submillimeter molecular line observations of dynamical motions towards seven Class 0 protostellar objects. The radiative transfer calculations are performed for two classes of protostellar collapse solutions: (1) "self-consistent", nonspherical, hydrodynamic, collapsing, rotating protostellar systems (Boss 1993); (2) parameterized, semi-analytic, rotating collapse solutions of Terebey, Shu and Cassen (1984) The morphology of the gas and dust emission is found to be a strong function of collapse time and angular resolution. From model centroid velocity maps, a distinctive new infall signature called the "blue-bulge" infall signature is derived. The blue-bulge infall signature can be observed in the centroid velocity maps of protostellar objects when infall dominates over rotation. This infall signature can be detected under a wide variety of source conditions, and should be easily observable using single-dish submillimeter telescopes. At high angular resolutions, models with moderate to high rotational rates exhibit the "polar blue-bulge" - a centroid velocity signature of underlying Keplerian rotation in an embedded cloud core. Submillimeter transitions of HCO+ and CS are found to be better than millimeter transitions in detecting infall, especially at early collapse times. Using new submillimeter observations in CS and HCO+ towards IRAS 16293-2422, the first detection of the "blue-bulge" signature towards a protostellar object is presented. The mass accretion rate through the infall region appears consistent with an inside-out collapse model for the source. Using new submillimeter HCO+ and CO observations, a detailed study was performed of six other nearby Class 0 objects. The blue-bulge signature of infall is detected in five sources. Among these, SMM4 and B335 are known infall candidates. VLA 1623, L483 and L1262 are new sources for which evidence for infall is derived in this work. SM1N, which does not exhibit a blue-bulge appears to be a pre-protostellar object. A low luminosity bipolar outflow was detected toward SM1N, suggesting that it may be in an extremely early stage of collapse. Of the six sources, only three, SMM4, B335 and L1262 exhibited the classic blue asymmetric line profile signature of infall, suggesting that the blue-bulge signature is more robust in detecting infall than traditional line profile techniques. Evolutionary trends are seen between observationally obtainable source parameters and model derived timescales for the Class 0 sources presented in this work. Such a study when extended to a larger sample of YSOs will help in the understanding of the evolution of YSOs from the embedded protostellar stage to revealed pre-main-sequence objects.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Philosophy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.