• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Macrophage response to polymeric vascular grafts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814449_sip1_m.pdf
    Size:
    4.398Mb
    Format:
    PDF
    Download
    Author
    Salzmann, Dennis Lee, 1970-
    Issue Date
    1997
    Keywords
    Biology, Animal Physiology.
    Health Sciences, Immunology.
    Advisor
    Williams, Stuart K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The use of materials for replacement or repair of biological tissue and organs has been attempted for thousands of years. Regardless of material used or site of implantation all biomedical materials elicit a foreign body response by the host characterized by the presence of macrophages and foreign body giant cells with the polymer for the duration of the implant. This inflammatory response is believed to be responsible for the lack of biocompatibility of implanted materials. Furthermore, each type of biomedical device suffers from specific problems that may lead to the ultimate failure of the implant. Synthetic polymeric vascular grafts fail primarily due to the inherent thrombogenecity of the material and anastomotic neointimal thickening. In an attempt to create a non-thrombogenic lining on the blood contacting surface of vascular implants, the promotion of an endothelial lining on the luminal surface of vascular grafts has been investigated. This can be accomplished by both artificial and natural mechanisms. Regardless, it is believed that the inflammatory response elicited by the implant influences the angiogenic mechanisms and neointimal thickening associated with the implant. The relationship between inflammation and angiogenesis associated with biomedical implants remains to be delineated. Studies in this dissertation attempt to determine this relationship by examining the inflammatory response and inflammatory cytokines released by cells associated with polymeric implants and how these bioactive molecules influence the angiogenic response. Furthermore, an advancing technology in vascular repair, endovascular grafts, was tested in two vascular models to assess the general healing characteristics, inflammatory response and the formation of blood vessels associated with the device. The results from these studies suggest that the inflammatory response plays a fundamental role in the formation of blood vessels around polymeric implants and neointimal thickening on the luminal surface of vascular implants. From these experiments a greater understanding of the healing response associated with vascular grafts has resulted.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.