• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Observations of main-belt asteroids in the 3-micron region

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9817333_sip1_c.pdf
    Size:
    26.90Mb
    Format:
    PDF
    Download
    Author
    Rivkin, Andrew Scott
    Issue Date
    1997
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Lebofsky, Larry A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Many asteroids show absorption features diagnostic of hydrated minerals in the 3-μm spectral region. Reflectance studies in this region can determine the hydration state of surface minerals, and by inference, the thermal histories of bodies. Observations of M-class asteroids from 1.25-3.5 μm show that many of these asteroids have water of hydration, and those that do cannot be interpreted as the cores of differentiated parent bodies. Because of this, it is suggested that the hydrated M asteroids should be split off into their own class--the W class. Simple spectral mixing models of these asteroids show they are consistent with enstatite chondritic material mixed with talc, suggesting the W asteroids may be the result of aqueous alteration of enstatite chondrites, though other models may also hold merit. The E asteroids are also found to have hydrated members, inconsistent with their interpretation as purely igneous bodies. A trend for large E and M asteroids to be hydrated is found. A compilation of S-class asteroid data at 3 μm has been performed, supporting the finding that some S asteroids have spectra consistent with a mixture of ordinary chondrite and metal. There is some evidence for a trend altering the spectra of near-Earth asteroids to look like main-belt asteroids, but no simple trend can also include the ordinary chondrite meteorites. Variation in asteroids at 3 mu m was studied, and while no clear evidence of rotational variation is found, there is circumstantial evidence for latitudinal variation on several asteroids, perhaps as interior layers of an aqueously altered body are excavated. Finally, high-resolution studies of C-class asteroids were performed. A finding that 1 Ceres' spectrum matches that of an ammoniated phyllosilicate is supported over an extended wavelength range. Observations of other CBG-class asteroids find no ammoniated minerals. The CBG-class asteroids, other than Ceres, all share very similar spectra, suggesting similar hydrated minerals on their surfaces.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.