Author
Pax, Paul Henry, 1958-Issue Date
1998Advisor
Meystre, Pierre
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Despite the many advances and achievements in the fields of atom optics and atom cooling, there remains a wealth of dynamical detail to be filled in. While the main features of the important phenomena of atomic cooling, trapping and manipulation by electromagnetic fields are well understood, there are interesting subsidiary effects that are worth our attention. An example, which we discuss in Ch. 5 is the discovery that atomic diffusion in optical lattices may not follow the normal diffusion equation. The work reported in this dissertation represents an investigation into possible few-body effects in some atom optical configurations of interest. The effects of indistinguishability, through the exchange force, on atomic diffraction by standing wave light fields is considered in Ch. 2. In Ch. 3, after a brief overview of atomic collisions in light fields, we look at the role that the dipole-dipole interaction might play, again in atomic diffraction. Chapters 4 and 5 are concerned with optical lattices, and lay the ground work for a study of the effect of the dipole-dipole interaction on the dynamics of atoms confined in such lattices.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeOptical Sciences