• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Functional organization of male-specific olfactory glomeruli in the sphinx moth Manduca sexta

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9729433_sip1_m.pdf
    Size:
    3.483Mb
    Format:
    PDF
    Download
    Author
    Heinbockel, Thomas, 1963-
    Issue Date
    1997
    Keywords
    Biology, Neuroscience.
    Biology, Entomology.
    Biology, Animal Physiology.
    Advisor
    Hildebrand, John G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The macroglomerular complex (MGC) in the antennal lobe of the sphinx moth Manduca sexta is the first brain region for processing sex-pheromonal information. How is the MGC is functionally organized, and how are chemical and physical features of the pheromone encoded by projection neurons (PNs) innervating the MGC (MGC-PNs). For some MGC-PNs with arborizations in the toroid, one of the two major glomeruli of the MGC, bombykal (a key pheromone component) can evoke a mixed (inhibitory/excitatory/inhibitory) response similar to that evoked by the pheromone blend. Likewise, for some neurons with arborizations in the cumulus, C-15 (a mimic of the second key component) can evoke a similar mixed response. The maximal pulse frequency encoded by these component-specific neurons was not increased in the presence of the blend, but seemed to arise through the convergence of two parallel pathways, one excitatory and one inhibitory, both activated by the same olfactory stimulus. Convergence of different synaptic pathways allowed MGC-PNs to resolve intermittent stimuli and thus to relay the temporal structure of the pheromonal signal to higher brain centers. In a subset of MGC-PNs that was excited by antennal stimulation with either of the two components (bombykal-C-15 cells, blend neurons), the ability to encode intermittent stimuli was improved when stimulating with the blend. The temporal character of the responses was dependent on the ratio of the two key components in the blend. Component-specific MGC-PNs responded over a range of increasing pheromone concentration with stronger inhibitory and excitatory postsynaptic potentials and more impulses but the responses were not affected by changing the blend ratio. Two basic response patterns emerged when the ipsilateral antennal flagellum was stimulated at different zones along its proximo-distal axis while the activity of MGC-PNs was recorded. A subset of neurons with broad receptive fields was excited regardless of the zone of the antenna stimulated, whereas another subset responded selectively to stimulation of the basal region of the antenna. A diverse array of MGC-PNs forms a heterogeneous group of parallel output channels that encode features of the pheromone signal that the moth is likely to encounter in the natural stimulus situation.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Neurosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.