• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Heat trace asymptotics for domains with singular boundaries

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9829386_sip1_m.pdf
    Size:
    1.097Mb
    Format:
    PDF
    Download
    Author
    Simek, Olga, 1966-
    Issue Date
    1998
    Keywords
    Mathematics.
    Advisor
    Friedlander, Leonid
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation consists of three main results regarding heat trace asymptotics for bounded domains with cusps. First, a refined asymptotic expansion for the Dirichlet heat trace θ(t) = Treᵗ(Δ)ᴰ on a planar domain with a single cusp is presented. First three terms appeared earlier in the physics literature. We prove them, together with logarithmic remainder estimate. Second, we obtain similar results for a family of three-dimensional solids of revolution with a cusp. Third, we calculate bounds for the Neumann heat trace Ψ(t) = Treᵗ(Δ)ᴺ on a planar region a cusp, which then allow us to conclude the first two terms in the asymptotic expansion of Ψ(t). For the upper bound, we use Golden-Thompson inequality. All the results for the Dirichlet heat trace and the calculation of the lower bound for the Neumann heat trace use Brownian motion.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.