A model for the multi-organ metabolism and nephrotoxicity of chlorotrifluoroethylene
Author
Hasal, Steven John, 1965-Issue Date
1998Advisor
Brendel, Klaus
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
During the past decade precision-cut tissue slices have begun to be utilized for toxicity and metabolism studies. These studies have primarily involved a single organ type. In this study, a new preparation of rat renal cortical slices was validated and used to investigate the toxicity of chlorotrifluoroethylene and its cysteine and glutathione conjugates. An additional level of complexity was added by utilizing a sequential incubation system in which rat renal cortical slices were directly incubated in the medium from liver slice incubations. Once the new renal slice preparation and sequential incubation system had been validated, these new methods were used to study the mechanism of toxicity of chlorotrifluoroethylene and it metabolites. The hypothesis being tested in these studies is that sequential biotransformation in the liver and the kidney is required for CTFE nephrotoxicity. In these studies I developed a sequential incubation system with precision-cut rat liver slices as the drug activating system and renal cortical slices as the target tissue for toxicity. Utilizing the sequential incubation system, I found that first incubating liver slices with CTFE and then transferring kidney slices to this liver slice incubation medium causes toxicity in the kidney slices. I also found that this toxicity correlates well with the toxicity observed with kidney slice incubations with the cysteine and glutathione conjugates of CTFE. By incubating slices with inhibitors of the various enzymes in the proposed metabolic pathway of CTFE, it was determined that glutathione conjugation in the liver and subsequent degradation by gamma-glutamyltranspeptidase are important steps in toxicity of CTFE. Although previous research with inhibitors of β-lyase have indicated that β-lyase is an essential enzyme in the bioactivation of CTFE, inhibition of the pyridoxal phosphate cofactor of this enzyme in renal slices did not reduce the toxicity of conjugates of CTFE. There was no reduction in toxicity when dipeptidases were inhibited when transport via the organic anion transporter or neutral amino acid transporter were inhibited. These data indicate that the glutathione conjugate of CTFE is formed in the liver and that the subsequent metabolism of this glutathione conjugate in the kidney is required for nephrotoxicity.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegePharmacology & Toxicology