• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The distribution of water in the solar nebula: Implications for solar system formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9901693_sip1_c.pdf
    Size:
    14.16Mb
    Format:
    PDF
    Download
    Author
    Cyr, Kimberly Ellen, 1964-
    Issue Date
    1998
    Keywords
    Physics, Astronomy and Astrophysics.
    Geochemistry.
    Advisor
    Lunine, Jonathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Water is important in the solar nebula both because it is extremely abundant and because it condenses out at 5 AU, allowing all three phases of H₂O to play a role in the composition and evolution of the solar system. In this work, a thorough examination of the inward radial drift of ice particles from 5 AU is undertaken. Drift model results are then linked to the outward diffusion of vapor, in one overall model which is numerically evolved over the lifetime of the nebula. Results of the model indicate that while the inner nebula is generally depleted in water vapor, there is a zone in which the vapor is enhanced by ∼40-100%, depending on the choice of ice grain growth mechanisms and rates. This enhancement peaks in the region from 0.1-2 AU and gradually drops off out to 5 AU. Conversely, ice abundance is enhanced over 3-5 AU. Representative hot (early) and cool (later) conditions during the quiescent phase of nebular evolution are examined. Additionally, the effect of the radial dependence of water depletion on nebular chemistry is quantified using a chemical equilibrium code that computes abundances of nebular elements and major molecular C, N, S, etc. species over a range of temperatures. In particular, changes in the local C/O ratio and organics abundance due to the radially dependent decrease in oxygen fugacity are tracked and plotted. Generally, the diffusion-drift model results in a more complex water distribution than previous models, with both radial and temporal variations in the C/O ratio which produce both relatively oxidizing and reducing nebular conditions across 1-5 AU. Depending on the value assumed for the solar C/O ratio, modest to significant enhancements of CH₄ and other organics abundances are produced in the inner nebula. These results coupled with the revised ice distribution may explain the radial signatures of hydration detections and darkening in asteroids, and perhaps the oxidation states of enstatite chondrites. The results also indicate that the inner nebula could have supplied organics and water to the terrestrial planets, as well as possibly to Europa and beyond, via outward mixing processes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.