Show simple item record

dc.contributor.advisorLunine, Jonathanen_US
dc.contributor.authorCyr, Kimberly Ellen, 1964-
dc.creatorCyr, Kimberly Ellen, 1964-en_US
dc.date.accessioned2013-05-09T09:13:49Z
dc.date.available2013-05-09T09:13:49Z
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/10150/288870
dc.description.abstractWater is important in the solar nebula both because it is extremely abundant and because it condenses out at 5 AU, allowing all three phases of H₂O to play a role in the composition and evolution of the solar system. In this work, a thorough examination of the inward radial drift of ice particles from 5 AU is undertaken. Drift model results are then linked to the outward diffusion of vapor, in one overall model which is numerically evolved over the lifetime of the nebula. Results of the model indicate that while the inner nebula is generally depleted in water vapor, there is a zone in which the vapor is enhanced by ∼40-100%, depending on the choice of ice grain growth mechanisms and rates. This enhancement peaks in the region from 0.1-2 AU and gradually drops off out to 5 AU. Conversely, ice abundance is enhanced over 3-5 AU. Representative hot (early) and cool (later) conditions during the quiescent phase of nebular evolution are examined. Additionally, the effect of the radial dependence of water depletion on nebular chemistry is quantified using a chemical equilibrium code that computes abundances of nebular elements and major molecular C, N, S, etc. species over a range of temperatures. In particular, changes in the local C/O ratio and organics abundance due to the radially dependent decrease in oxygen fugacity are tracked and plotted. Generally, the diffusion-drift model results in a more complex water distribution than previous models, with both radial and temporal variations in the C/O ratio which produce both relatively oxidizing and reducing nebular conditions across 1-5 AU. Depending on the value assumed for the solar C/O ratio, modest to significant enhancements of CH₄ and other organics abundances are produced in the inner nebula. These results coupled with the revised ice distribution may explain the radial signatures of hydration detections and darkening in asteroids, and perhaps the oxidation states of enstatite chondrites. The results also indicate that the inner nebula could have supplied organics and water to the terrestrial planets, as well as possibly to Europa and beyond, via outward mixing processes.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
dc.subjectGeochemistry.en_US
dc.titleThe distribution of water in the solar nebula: Implications for solar system formationen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9901693en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b38825569en_US
dc.description.admin-noteOriginal file replaced with corrected file October 2023.
refterms.dateFOA2018-09-06T05:39:46Z
html.description.abstractWater is important in the solar nebula both because it is extremely abundant and because it condenses out at 5 AU, allowing all three phases of H₂O to play a role in the composition and evolution of the solar system. In this work, a thorough examination of the inward radial drift of ice particles from 5 AU is undertaken. Drift model results are then linked to the outward diffusion of vapor, in one overall model which is numerically evolved over the lifetime of the nebula. Results of the model indicate that while the inner nebula is generally depleted in water vapor, there is a zone in which the vapor is enhanced by ∼40-100%, depending on the choice of ice grain growth mechanisms and rates. This enhancement peaks in the region from 0.1-2 AU and gradually drops off out to 5 AU. Conversely, ice abundance is enhanced over 3-5 AU. Representative hot (early) and cool (later) conditions during the quiescent phase of nebular evolution are examined. Additionally, the effect of the radial dependence of water depletion on nebular chemistry is quantified using a chemical equilibrium code that computes abundances of nebular elements and major molecular C, N, S, etc. species over a range of temperatures. In particular, changes in the local C/O ratio and organics abundance due to the radially dependent decrease in oxygen fugacity are tracked and plotted. Generally, the diffusion-drift model results in a more complex water distribution than previous models, with both radial and temporal variations in the C/O ratio which produce both relatively oxidizing and reducing nebular conditions across 1-5 AU. Depending on the value assumed for the solar C/O ratio, modest to significant enhancements of CH₄ and other organics abundances are produced in the inner nebula. These results coupled with the revised ice distribution may explain the radial signatures of hydration detections and darkening in asteroids, and perhaps the oxidation states of enstatite chondrites. The results also indicate that the inner nebula could have supplied organics and water to the terrestrial planets, as well as possibly to Europa and beyond, via outward mixing processes.


Files in this item

Thumbnail
Name:
azu_td_9901693_sip1_c.pdf
Size:
14.16Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record