Show simple item record

dc.contributor.advisorStrom, Robert G.en_US
dc.contributor.authorDawson, Douglas Duane, 1969-
dc.creatorDawson, Douglas Duane, 1969-en_US
dc.date.accessioned2013-05-09T09:17:45Z
dc.date.available2013-05-09T09:17:45Z
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/10150/288915
dc.description.abstractThe images of the surface of Venus returned by the Magellan spacecraft show a cratering record unlike any other in the solar system. Multiple models of the geologic history of Venus have been proposed to explain this cratering record, including the "equilibrium resurfacing" model and the "global resurfacing" model. I use a two-dimensional Monte Carlo simulation of crater emplacement and volcanic resurfacing to determine what sorts of cratering records would in fact be produced by these models. The equilibrium resurfacing model fails to produce a cratering record resembling the observations. The global resurfacing model requires the specification of post-global resurfacing event history before it can be simulated by this program, but following appropriate specification, it did reproduce the observed cratering record. The global resurfacing model is thereby found to be a more satisfactory model than the equilibrium model. The length of the tail end of the global resurfacing event is found to be of the order of 100 million years, subject to uncertainty in the impactor flux at Venus. The fraction of the planet resurfaced after the end of the global resurfacing event is found to be roughly 15-20%.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectGeology.en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
dc.titleModelling the cratering record of Venusen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9912086en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b39118277en_US
dc.description.admin-noteOriginal file replaced with corrected file September 2023.
refterms.dateFOA2018-06-30T18:32:21Z
html.description.abstractThe images of the surface of Venus returned by the Magellan spacecraft show a cratering record unlike any other in the solar system. Multiple models of the geologic history of Venus have been proposed to explain this cratering record, including the "equilibrium resurfacing" model and the "global resurfacing" model. I use a two-dimensional Monte Carlo simulation of crater emplacement and volcanic resurfacing to determine what sorts of cratering records would in fact be produced by these models. The equilibrium resurfacing model fails to produce a cratering record resembling the observations. The global resurfacing model requires the specification of post-global resurfacing event history before it can be simulated by this program, but following appropriate specification, it did reproduce the observed cratering record. The global resurfacing model is thereby found to be a more satisfactory model than the equilibrium model. The length of the tail end of the global resurfacing event is found to be of the order of 100 million years, subject to uncertainty in the impactor flux at Venus. The fraction of the planet resurfaced after the end of the global resurfacing event is found to be roughly 15-20%.


Files in this item

Thumbnail
Name:
azu_td_9912086_sip1_c.pdf
Size:
4.379Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record