We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorVrudhula, Sarma B. K.en_US
dc.contributor.authorWang, Qi
dc.creatorWang, Qien_US
dc.date.accessioned2013-05-09T09:18:14Z
dc.date.available2013-05-09T09:18:14Z
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/10150/288924
dc.description.abstractThe dissertation addresses several problems in the power optimization and power-delay tradeoffs in digital CMOS circuits. The work is organized according to the three main sources of power dissipation: Power dissipation due to switching (P(sc)), standby or leakage power (P(leak)) and short circuit power (P(sc)). First we present new, efficient and provably correct algorithms for minimizing the switching power in combinational and sequential CMOS logic circuits. The techniques are based on the addition and removal of redundancies at the logic level. The basic technique developed for combinational circuits is extended to sequential circuits. Results of experiments carried on large (thousands of logic gates) commerical circuits (of the PowerPC chip) will be presented. Power dissipation due to the short circuit current has received much less attention. For submicron MOSFETs, this can be comparable to the switching power. A new, and computationally tractable model for the short circuit current in CMOS inverters and more complex CMOS gates was developed. This model was verified using a commerical 0.25 μm CMOS library and device models. The problem of minimizing the standby power for deep submicron technology is also addressed. The standby power dissipation has often been ignored in the design of CMOS circuits since its contribution to the total power dissipation has been negligable. However as device dimensions and voltages are scaled down, the standby power can be of the same order of magnitude as the switching power. This is a serious problem of many portable devices as they are in standby mode for considerable periods of time. One approach to alleviate this problem is the use of dual threshold voltages. We developed several new algorithms that optimally assign one of two threshold voltages to CMOS gates so as to minimize the standby power without sacrificing performance. The new algorithms handle circuits of thousands of gates and it is shown that the standby power can be reduced by as much as an order of magnitude without any loss of performance.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.titleLogic synthesis for low poweren_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9912148en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b39124770en_US
dc.description.admin-noteOriginal file replaced with corrected file September 2023.
refterms.dateFOA2018-09-06T06:02:27Z
html.description.abstractThe dissertation addresses several problems in the power optimization and power-delay tradeoffs in digital CMOS circuits. The work is organized according to the three main sources of power dissipation: Power dissipation due to switching (P(sc)), standby or leakage power (P(leak)) and short circuit power (P(sc)). First we present new, efficient and provably correct algorithms for minimizing the switching power in combinational and sequential CMOS logic circuits. The techniques are based on the addition and removal of redundancies at the logic level. The basic technique developed for combinational circuits is extended to sequential circuits. Results of experiments carried on large (thousands of logic gates) commerical circuits (of the PowerPC chip) will be presented. Power dissipation due to the short circuit current has received much less attention. For submicron MOSFETs, this can be comparable to the switching power. A new, and computationally tractable model for the short circuit current in CMOS inverters and more complex CMOS gates was developed. This model was verified using a commerical 0.25 μm CMOS library and device models. The problem of minimizing the standby power for deep submicron technology is also addressed. The standby power dissipation has often been ignored in the design of CMOS circuits since its contribution to the total power dissipation has been negligable. However as device dimensions and voltages are scaled down, the standby power can be of the same order of magnitude as the switching power. This is a serious problem of many portable devices as they are in standby mode for considerable periods of time. One approach to alleviate this problem is the use of dual threshold voltages. We developed several new algorithms that optimally assign one of two threshold voltages to CMOS gates so as to minimize the standby power without sacrificing performance. The new algorithms handle circuits of thousands of gates and it is shown that the standby power can be reduced by as much as an order of magnitude without any loss of performance.


Files in this item

Thumbnail
Name:
azu_td_9912148_sip1_c.pdf
Size:
12.39Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record