• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Quantum state preparation in an optical lattice

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9923139_sip1_m.pdf
    Size:
    2.463Mb
    Format:
    PDF
    Download
    Author
    Hamann, Steven Eugene
    Issue Date
    1998
    Keywords
    Physics, Atomic.
    Physics, Optics.
    Advisor
    Jessen, Poul S.
    Meystre, Pierre
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation reports on quantum state preparation of cesium atoms in a two-dimensional optical lattice, by resolved-sideband Raman cooling. An optical lattice is a periodic potential produced by the light shift interaction between an atom and light field. Laser cooled atoms can become strongly localized about the bottom of potential wells in an optical lattice, where they occupy a discrete spectrum of bound vibrational energy levels. The distribution over vibrational levels of atoms in the lattice is characterized by the mean vibrational excitation, n . In an optical lattice, absorption and emission of photons from lattice beams causes n to increase in time. This source of heating is always present, but its rate can be greatly reduced in a lattice detuned far from the atomic resonance. Sideband cooling is an efficient means of transferring atoms from higher into lower-lying vibrational levels and, thus, it reduces n for the ensemble. If the sideband cooling rate is much greater than the heating rate, then n approaches zero and virtually all atoms are in the lowest vibrational level in their potential wells. Our sideband cooling scheme involves stimulated Raman transitions between bound states in the potential wells of a pair of magnetic sublevels, followed by optical pumping, for a net loss of one quantum of vibration per cooling cycle. The process accumulates 98% of atoms in the ground vibrational level of a potential well associated with a single Zeeman substate. Each atom in the lattice is then very close to a pure state. For two-dimensional lattice with sideband cooling we find nx≈ny≈0.008 &parl0;16&parr0; . Various issues related to state preparation and sideband cooling are also discussed in the context of a one dimensional lin ⊥ lin optical lattice. These include improvement of laser cooling in a near resonance lattice by application of weak magnetic fields, transfer of atoms from near into far off-resonance lattices, and heating rates in far off-resonance lattices.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.