• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Image restoration using trellis-search methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9927465_sip1_c.pdf
    Size:
    9.194Mb
    Format:
    PDF
    Download
    Author
    Miller, Casey Lee
    Issue Date
    1999
    Keywords
    Engineering, Electronics and Electrical.
    Physics, Optics.
    Advisor
    Hunt, Bobby R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Methods for the restoration of images corrupted by blur and noise are presented. During transmission through an optical or electrical channel, images become corrupted by blur and noise as a result of channel limitations (i.e. optical aberrations or a bandlimit). If images are treated as a matrix whose elements (pixels) assume a finite number of values then there is a large but finite set of possible images that can be transmitted. By treating this finite set as a 'signal' set, digital communications methods may be used to estimate the uncorrupted image given a blurred and noisy version. Specifically, row-by-row estimation, decision-feedback and vector-quantization are used to extend the 1D sequence estimation ability of the a-posteriori probability (APP) and Viterbi algorithm (VA) to the estimation of 2D images. Simulations show the 2D VA and APP algorithms return near-optimal estimates of binary images as well as improved estimates of greyscale images when compared with the conventional Wiener filter (WF) estimates. Unlike the WF, the VA and APP algorithms are shown to be capable of super-resolution and adaptable for use with signal-dependent Poisson noise corruption. Restorations of experimental data gathered from an optical imaging system are presented to support simulation results.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.