• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Features in optimality theory: A computational model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9927516_sip1_m.pdf
    Size:
    5.800Mb
    Format:
    PDF
    Download
    Author
    Heiberg, Andrea Jeanine
    Issue Date
    1999
    Keywords
    Language, Linguistics.
    Advisor
    Archangeli, Diana
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation presents a computational model of Optimality Theory (OT) (Prince and Smolensky 1993). The model provides an efficient solution to the problem of candidate generation and evaluation, and is demonstrated for the realm of phonological features. Explicit object-oriented implementations are proposed for autosegmental representations (Goldsmith 1976 and many others) and violable OT constraints and Gen operations on autosegmental representations. Previous computational models of OT (Ellison 1995, Tesar 1995, Eisner 1997, Hammond 1997, Karttunen 1998) have not dealt in depth with autosegmental representations. The proposed model provides a full treatment of autosegmental representations and constraints on autosegmental representations (Akinlabi 1996, Archangeli and Pulleyblank 1994, Ito, Mester, and Padgett 1995, Kirchner 1993, Padgett 1995, Pulleyblank 1993, 1996, 1998). Implementing Gen, the candidate generation component of OT, is a seemingly intractable problem. Gen in principle performs unlimited insertion; therefore, it may produce an infinite candidate set. For autosegmental representations, however, it is not necessary to think of Gen as infinite. The Obligatory Contour Principle (Leben 1973, McCarthy 1979, 1986) restricts the number of tokens of any one feature type in a single representation; hence, Gen for autosegmental features is finite. However, a finite Gen may produce a candidate set of exponential size. Consider an input representation with four anchors for each of five features: there are (2⁴ + 1)⁵, more than one million, candidates for such an input. The proposed model implements a method for significantly reducing the exponential size of the candidate set. Instead of first creating all candidates (Gen) and then evaluating them against the constraint hierarchy (Eval), candidate creation and evaluation are interleaved (cf. Eisner 1997, Hammond 1997) in a Gen-Eval loop. At each pass through the Gen-Eval loop, Gen operations apply to create the minimal number of candidates needed for constraint evaluation; this candidate set is evaluated and culled, and the set of Gen operations is reduced. The loop continues until the hierarchy is exhausted; the remaining candidate(s) are optimal. In providing explicit implementations of autosegmental representations, constraints, and Gen operations, the model provides a coherent view of autosegmental theory, Optimality Theory, and the interaction between the two.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Linguistics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.