• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Real-time assessment of organic anion secretion in isolated, perfused rabbit renal proximal tubules

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9946837_sip1_m.pdf
    Size:
    2.211Mb
    Format:
    PDF
    Download
    Author
    Shuprisha, Apichai
    Issue Date
    1999
    Keywords
    Biology, Molecular.
    Biology, Animal Physiology.
    Advisor
    Dantzler, William H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A newly developed epifluorescense microscopy system has been employed to measure net transepithelial secretion of fluorescein (FL) in real time in isolated perfused S2 segments of rabbit renal proximal tubules. Net FL secretion (K(t), ∼4 μM, and J(max), ∼280 fmol·min⁻¹·mm⁻¹) shares the same transport system with that of para -aminohippurate (PAH). The basolateral Na-DC cotransporter supports ∼25% of the "basal" FL secretion in the absence of exogenous αKG via recycling of αKG that has been exchanged for FL. Physiological αKG concentrations in the bath (∼10 μM) or in the perfusate (∼50 μM) stimulated net secretion of FL by ∼30 or ∼20%, respectively. These data indicate that the basolateral Na-DC cotransporter supports ∼42% of the net FL secretion. The luminal and basolateral effects of physiological concentrations of αKG were additive. Together, the basolateral and luminal Na-DC cotransporters can directly support ∼50% of the net FL secretion, apparently, by their establishing and maintaining the outwardly directed αKG gradient responsible for driving basolateral FL/αKG exchange. The remaining ∼50% would be maintained by metabolic production of αKG in the cells. Adding of 100 nM phorbol 12-myristate 13-acetate (PMA), a known PKC activator, to the bath decreased steady-state secretion of FL by ∼30% after 25 min incubation. This inhibition was irreversible and increased to ∼60% 25 min following removal of PMA. The inhibition produced by PMA was blocked when 100 nM of either staurosporine (ST) or bisindolylmaleimide I (BIM), both known PKC inhibitors, was added to the bath. ST or BIM alone had no significant effect on FL secretion, suggesting that the basal FL secretion was not under the influence of PKC. Adding of 1 μM of either the peptide hormone bradykinin (BK) or the α₁-receptor agonist phenylephrine (PE), to the bath both of which stimulate PKC via a ligand-receptor-PKC coupling reaction, inhibited FL secretion by ∼22% and ∼27%, respectively. The inhibition was completely reversible after removal of BK or PE. In conclusion, PKC negatively regulates the net secretion of FL in rabbit renal proximal tubules. The data indicate that BK or catecholamines can play a physiological role in regulating organic anion secretion via PKC activation.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.