• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Geochemical studies of the cores of terrestrial planetary bodies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9957965_sip1_c.pdf
    Size:
    13.57Mb
    Format:
    PDF
    Download
    Author
    Chabot, Nancy Lynne
    Issue Date
    1999
    Keywords
    Physics, Astronomy and Astrophysics.
    Geochemistry.
    Advisor
    Drake, Michael J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    From the Earth to asteroids, numerous rocky bodies in our solar system are believed to have a metallic core at their center. However, due to the inaccessibility of these cores, fundamental issues, such as the composition of the cores or the processes of core formation and core evolution, are not well known. I have conducted both theoretical and experimental geochemical studies which have improved our understanding of the cores of terrestrial planetary bodies. The radioactive decay of K is an important planetary heat source, but the distribution of K in terrestrial planetary bodies has been debated. My experimental work, which examined the solubility of K in metal, shows no evidence for K to be an important heat source in metallic cores. The element pairs of Ag, Pd and Re, Os have been used to date core formation and core evolution events in our solar system. My experimental determination of the partitioning behavior of these important elements can be used to better understand their distribution in iron meteorites, our only samples of planetary cores. Simple fractional crystallization of a metallic core cannot explain the elemental trends observed within iron meteorite groups. I have developed a crystallization model which suggests slight inhomogeneities and mixing in the molten core were important during core evolution. As a metallic core crystallizes, liquid immiscibility may be encountered, which could significantly affect the subsequent evolution of the core. My experimental work suggests the role of liquid immiscibility during the crystallization of a metallic core is significantly smaller than the published phase diagram implies. These four topics, though each an independent project, together provide insight into the nature of the cores of terrestrial planetary bodies and the processes which affect those cores.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.