• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Scale, ecosystem resilience, and fire in shortgrass steppe

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9983915_sip1_w.pdf
    Size:
    6.540Mb
    Format:
    PDF
    Download
    Author
    Ford, Paulette Louise
    Issue Date
    2000
    Keywords
    Biology, Ecology.
    Advisor
    McClaran, Mitchel P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Consideration of scale and ecosystem resilience is integral to any conceptual model of the effects of disturbance on ecosystems. Organisms, populations, communities, and ecosystems are differentially affected by disturbance based on the scale at which they occupy the landscape. Scale of observation influences perceptions about ecosystem resilience. There is no single correct scale at which ecological phenomena should be studied, and management decisions require the interfacing of phenomena that occur on very different scales of space and time. Fire disturbance affects a variety of ecosystem factors including nutrient cycling, species diversity, and population and community dynamics. My experimental research on fire in shortgrass steppe examined the effects of fire and season of fire on various components of shortgrass steppe at multiple spatial and temporal scales and organizational units. My experimental design was completely randomized, with 3 treatments, and 4 replicates per treatment. Treatments were dormant-season fire, growing-season fire, and unburned. Response variables were (1) ground cover; (2) microbiotic crust nitrogen fixation, and chlorophyll a content; and (3) species richness, abundance, and relative abundance of small mammals and arthropods. Microbiotic crust cover never differed significantly among treatments for all periods, however, acetylene reduction and chlorophyll a content of crusts differed significantly among treatments. Dormant-season fire-treated crusts had significantly lower rates of acetylene reduction than unburned crusts, while growing-season fire-treated crusts did not differ significantly from unburned or dormant-season fire-treated crusts. Dormant-season fire-treated crusts had significantly lower chlorophyll content than unburned crusts, while growing-season fire-treated crusts did not significantly differ from unburned or dormant-season fire treated-crusts. Initially, growing-season fire significantly reduced grass cover compared to unburned and dormant-season fire. Approximately 30 months later there were no significant differences in grass cover among treatments. Bare ground response was basically the inverse of grass cover response. The only significant differences in litter cover between treatments occurred immediately after the growing-season fire. Arthropod species richness differed significantly among treatments; growing-season fire plots had a significantly higher number of beetle species. However, overall beetle abundance did not significantly differ among treatments. Significant differences were never detected in overall rodent species richness or abundance among treatments.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Renewable Natural Resources
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.