• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exploring expanded wavelength regions with solid state focal plane detectors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9992052_sip1_m.pdf
    Size:
    7.786Mb
    Format:
    PDF
    Download
    Author
    Ridder, Trent D.
    Issue Date
    2000
    Keywords
    Chemistry, Analytical.
    Physics, Optics.
    Advisor
    Denton, M. Bonner
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation research has focused on the design of two spectroscopic instruments that operate outside of the UV/visible region for the analysis of volatile organic hydrocarbons and hard-to-separate hydrocarbon mixtures. The first design was solid state near infrared spectrometer. The fast acquisition rate of the NIR spectrometer allowed the monitoring of the bromination of 1-hexene. The concentrations of 1-hexene and 1,2-dibromohexane were determined for the reaction using classical least squares. The root mean squared errors of prediction for 1-hexene and 1,2-dibromohexane concentrations were 0.01 and 0.003 M, respectively. This research project also focused on the investigation of the effects of instrumental parameters on partial least squares models by comparing the results obtained from four different spectrometers. The results indicate that instrumental parameters, such as resolution and wavelength coverage, have a larger effect on experimental results than the analysis method (NIR or Raman). The second instrument design investigated here was a vacuum ultraviolet ICP-AES which monitored the 130 to 200 nm wavelength range. Fifteen nonmetals were used to determine the quantitative characteristics of the design. All elements demonstrated detection limits in the ppb range. The most sensitive emission line in this work was the aluminum 167.079 nm line which had a detection limit of 200 ppt. A VUV atomic emission line database was developed to provide an analytical reference for future investigations. The database included the emission lines from 76 elements over the 130 to 195 nm wavelength region. Over 2200 lines were observed and reported. Over 1000 of the lines were previously unreported in the two major existing references for the VUV. This work is the first VUV reference to provide truly comparable intensities for a large number of elements. A GC-VUV-ICP-AES was developed to investigate the potential of VUV-ICP atomic emission spectroscopy to provide both quantitative and qualitative information for mixtures. Chlorine and carbon chromatograms were obtained simultaneously for volatile organic hydrocarbon (VOC) mixtures. The work showed that GC-VUV-ICP-AES has the potential of generating empirical formulas for compounds by simultaneously quantitating each element in the compound and determining their ratios.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.