• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The role of milk-borne epidermal growth factor on hepatic development in artificially reared suckling rats

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9992128_sip1_c.pdf
    Size:
    7.332Mb
    Format:
    PDF
    Download
    Author
    Baker, Gregory Lloyd
    Issue Date
    2000
    Keywords
    Biology, Anatomy.
    Biology, Cell.
    Advisor
    McCuskey, Robert S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Breast milk contains many biologically active substances, including epidermal growth factor (EGF), that are absent from artificial milk formulas. Previous studies have shown dramatic growth and maturation effects of milk-borne EGF on the intestine. This raises the question as to whether artificial milk formulas should be supplemented with biologically active substances, such as EGF. As a result, this dissertation examined whether feeding suckling rats artificial milk formula supplemented with EGF modulates liver development. The normal development of hepatic cells in suckling and weanling rats also was characterized. Additionally, this dissertation examined whether gut-derived endotoxin and tumor necrosis factor alpha (TNFα) play a role in liver development. Dam-fed suckling and weanlings showed increases in the reorganization of hepatocellular plates, numbers of binucleated hepatocytes, and a tendency for sinusoidal endothelial cell fenestrae density and porosity to increase with age. Monocytic derived cells increased at days 8-12 and decreased at day 16. Hepatic stellate cells decreased with age. Colon microbial flora and portal venous endotoxin were present from day 8 onward. Compared to artificial milk formula feeding alone, EGF in the artificial formula elicited increased numbers of binucleated hepatocytes, changes in colon microbial flora, and a tendency for increased numbers of Kupffer cells and portal venous endotoxin. Compared to breast milk, the artificial diet caused decreases in binucleated hepatocytes, increases in monocytic derived cells, Kupffer cells, hepatic stellate cells, portal venous endotoxin and changes in the composition of the colon microbial flora. These increases in cells may be due to colonization of the colon with microbial flora which increased portal venous endotoxin. Increased endotoxin may provide a stimulus for the recruitment of monocytic derived cells to the liver and differentiation into Kupffer cells, which then stimulates hepatic stellate cell proliferation. However, the increases in portal venous endotoxin were not sufficient to elicit hepatic TNFα, mRNA production. In conclusion, milk-borne EGF is involved in differentiation of hepatocytes and changes colon microbial flora that occur in suckling rats. Whether accelerating maturation of hepatocyte is beneficial or detrimental to the suckling rats remains to be determined. Therefore, the supplementation of artificial milk formula with EGF warrants further consideration and research.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cell Biology and Anatomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.