• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A diffractive optic image spectrometer (DOIS)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9738976_sip1_c.pdf
    Size:
    71.22Mb
    Format:
    PDF
    Download
    Author
    Blanchard Lyons, Denise Marie, 1967-
    Issue Date
    1997
    Keywords
    Engineering, Electronics and Electrical.
    Physics, Optics.
    Environmental Sciences.
    Advisor
    Dereniak, Eustace L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The diffractive optic imaging spectrometer, DOIS, is a high resolution, compact, economical, rugged, programmable, multi-spectral imager. The design implements a conventional CCD camera and emerging diffractive optical element (DOE) technology in an elegant configuration, adding spectroscopy capabilities to current imaging systems. One limitation of DOEs, also known as zone plate lenses, is abundant chromatic aberration. DOIS exploits this typically unwanted effect, utilizing a DOE to perform the imaging and provide the dispersion necessary to separate a multi-spectral target into separate spectral images. The CCD is stepped or scanned along the optical axis recording a series of these spectral images. This process is referred to as diffractive spectral sectioning. Under this dissertation, three-dimensional spectral/spatial DOE imaging theory was developed to describe and predict the system's performance. The theory was implemented in a software model to simulate DOIS image cubes. A visible spectrum DOIS prototype was designed, fabricated and characterized. The system's incoherent point spread function was theoretically modeled and experimentally determined. To verify the simulations, the prototype's performance was demonstrated with a variety of known targets and compared to simulated image cubes. To reconstruct the three-dimensional object cubes, various deconvolution algorithms, nearest neighbor, inverse filtering and constrained iterative deconvolution, were developed and applied to both computer generated and experimentally measured image cubes. The best results were obtained using an SVD inverse Fourier deconvolution algorithm with regularization for noise suppression. The results demonstrate a resolving power greater than 288 (lambda /Deltalambda = 577nm/2nm). Finally, three additional DOIS designs are presented as suggestions for future work, including a configuration with no moving parts which records the entire 3D image cube in one "snapshot". DOIS is a practical image spectrometer that can be built to operate at ultraviolet, visible or infrared wavelengths for applications in surveillance, remote sensing, medical imaging, law enforcement, environmental monitoring, and laser counter intelligence.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.