• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A new methodology for the numerical simulation of wall bounded turbulent flows

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3002544_sip1_m.pdf
    Size:
    5.221Mb
    Format:
    PDF
    Download
    Author
    Bachman, Cary Robert
    Issue Date
    2001
    Keywords
    Engineering, Aerospace.
    Engineering, Mechanical.
    Advisor
    Fasel, Hermann F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Research is presented on the development and testing of a new procedure for the time dependent, spatially varying numerical simulation of wall bounded turbulent flows. The Flow Simulation Methodology (FSM), as it is now known, was originally proposed by Speziale (1996a) for the purpose of computing complex, non-equilibrium flows which are currently beyond the reach of Smagorinsky based Large-Eddy Simulations (LES). The new method represents a hybrid approach that combines favorable aspects of Reynolds stress modeling [used for Reynolds Averaged Navier-Stokes (BANS) calculations] with the underlying principles of LES. For instance, Reynolds stress models developed for non-equilibrium, anisotropic, and/or rotational flows can be utilized in the unsteady manner of LES, i.e. where the flow field is decomposed into resolved-scale (calculated) and subgrid-scale (modeled) components, thereby reducing computational requirements. The key to the FSM is a contribution function which provides a degree of local turbulence modeling that is dependent upon the ratio of the numerical resolution to the Kolmogorov length-scale, an estimate for the smallest scales of turbulent motion. With this approach, a calculation resolved to the level of a Direct Numerical Simulation (DNS) can proceed continuously to a Reynolds Averaged Navier-Stokes calculation as the numerical resolution is decreased and/or the Reynolds number is increased. In between these two limits, an "untraditional" LES is recovered. The method is untraditional because it replaces the commonly employed Smagorinsky subgrid-scale model, which is known to have considerable limitations, with a more capable Reynolds stress model. A detailed evaluation of the Flow Simulation Methodology is made for the test case of a transitional and turbulent flat plate boundary layer with zero pressure gradient. The relatively simple geometry is chosen because the technical issues associated with combining elements of RANS calculations and LES must be established and the FSM itself must be validated before more complex flows can be attempted. The Reynolds stresses needed for the new method are computed using the two-equation Algebraic Stress Model (ASM) of Gatski & Speziale (1993) developed for non-equilibrium turbulent flows. Results of FSM calculations are compared with results obtained from coarse grid DNS, traditional LES based on the Smagorinsky subgrid-scale model, and RANS, all of which are implemented using an identical core computer code. This approach is extremely valuable to the evaluation of the FSM since a common code allows for certain behaviors to be more easily attributed to the turbulence models as opposed to numerical effects. Further validation is achieved through comparisons of FSM results with various direct numerical simulations and experiments available in the literature.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Aerospace and Mechanical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.