• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Type II supernovae as distance indicators

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3031358_sip1_m.pdf
    Size:
    5.210Mb
    Format:
    PDF
    Download
    Author
    Hamuy, Mario Andres
    Issue Date
    2001
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Pinto, Philip A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    I report photometry and spectroscopy for 16 Type II supernovae (SNe) observed during the Calan/Tololo, SOIRS, and CTIO SN programs, a valuable resource for astrophysical studies. I perform a detailed assessment of the performance of the "expanding photosphere method" (EPM) in the determination of extragalactic distances. EPM proves very sensitive to the many steps involved in the analysis which can make it an art instead of an objective measurement tool. To minimize biases I implement objective procedures to compute synthetic magnitudes, measure true photospheric velocities, interpolate velocities, estimate dust extinction and realistic errors. While EPM performs well during the initial phases of SN evolution, I find distance residuals as large as 50% as the photosphere approaches the H recombination temperature. Despite the effort to lend credence to EPM, it proves necessary to exercise great care to avoid biasing the results. The main sources of uncertainties are observational errors (8%), dilution factors (11%), velocity interpolations (12%), and dust extinction (14%). The EPM Hubble diagram suggests the true error in an individual EPM distance is 20%. I find values of 63 ± 8 and 67 ± 7 km s⁻¹ Mpc⁻¹ for the Hubble constant, depending on the redshift sample chosen for the analysis. This result is independent of the extragalactic distance scale which yields 65 ± 5 from Cepheid/SNe la distances. From four objects the comparison of EPM and Tully-Fisher yields D(EPM)/D(TF) = 0.82 ± 0.12. I derive bolometric corrections for plateau SNe (SNe II-P) that permit me to obtain reliable bolometric luminosities from BVI photometry. Despite the great diversity displayed by SNe II-P, the duration of the plateau is approximately the same and the luminosities and expansion velocities measured in the middle of the plateau prove highly correlated. From the luminosity of the exponential tail I obtain ⁵⁶Co masses ranging between 0.02 and 0.28 M(⊙), and some evidence that SNe with brighter plateaus produce more Ni (and its daughter Co). The correlation between expansion velocity and luminosity permits me the use of SNe II-P as standard candles with a magnitude dispersion between 0.39-0.20 mag. Using SN 1987A to calibrate the Hubble diagram I get H₀ = 55 ± 12 and H₀ = 56 ± 9 from the V and I filters, respectively.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.