• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Surface forces apparatus (SFA) studies on n-octadecyltriethoxysilane self-assembled monolayers on untreated and plasma-treated mica

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3031397_sip1_m.pdf
    Size:
    2.364Mb
    Format:
    PDF
    Download
    Author
    Kim, Sung-Soo
    Issue Date
    2001
    Keywords
    Chemistry, Physical.
    Physics, Molecular.
    Environmental Sciences.
    Advisor
    Curry, Joan E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Prehydrolyzed n-octadecyltriethoxysilane (OTE) molecules were self-assembled as a monolayer on both untreated and argon/water vapor plasma-treated mica. The properties and stability of these monolayers have been qualitatively and quantitatively investigated with a surface forces apparatus (SFA) under various environmental conditions The interaction force between the OTE monolayers immersed in water showed that plasma treatment reduced the range of the steep short-range repulsion and motivated the water vapor studies. The humidity tests revealed a substantial monolayer swelling in the untreated case at 95% RH or higher but there was no swelling in the plasma treated case. Furthermore, adhesive force measurements as a function of variations in environmental conditions such as temperature, relative humidity, contact time, and high stress showed that the plasma treated OTE monolayer appears to be more stable than the untreated monolayer in high humidities. In dry conditions both rnonolayers are molecularly smooth, well ordered and highly compact as well as mechanically robust and tenacious. Finally, the thickness compressibility studies in both dry and humid conditions suggested that the OTE phase state for both the plasma treated and untreated cases is pseudo-crystalline. Further, these studies suggested that the monolayer on both plasma treated and untreated mica does not fully cover the entire surface and likely exists as two very discrete phase states composed of large crystalline polymerized OTE domains and somewhat hydrophilic gaseous regions. The results from several different SFA experiments strongly indicates the OTE-SAM is covalently attached at least partially to the plasma treated mica while the monolayer weakly physisorbs to the untreated mica surface. Accordingly, due to the covalent connection, the OTE-SAM on plasma treated mica is more stable particularly in highly humid or even completely wet environments although it is thought the monolayer does not fully cover the mica surface.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.