• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Conjugate natural convection from a discrete heat source on a conducting plate in a shallow enclosure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3031399_sip1_m.pdf
    Size:
    2.690Mb
    Format:
    PDF
    Download
    Author
    Lall, Balwant
    Issue Date
    2001
    Keywords
    Engineering, Electronics and Electrical.
    Engineering, Mechanical.
    Engineering, Packaging.
    Advisor
    Ortega, Alfonso
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Experiments were performed to characterize the conjugate heat transfer due to a square flush heat source mounted at the center of a square horizontal plate in a small horizontal enclosure. The plate area was six times larger than the heat source area. Three different plates with heat source facing upwards were considered: a 25mm balsa wood plate which provided a nearly adiabatic surface, a 1.57mm thick FR-4 plate with no copper, and a 1.57mm thick FR-4 plate with a single layer of 0.036mm thick copper cladding on source side. The back of the board was insulated for all cases. The experimental exploration included measurement of heat transfer coefficient over the heat source, plate surface temperature distribution and temperature distribution in the air volume above the plate. The heat transfer coefficients exhibited distinct behavior at high aspect ratios in which the dominant length scales were related to the source. At intermediate aspect ratios, length scales for both source and enclosure were relevant, and at small aspect ratios, a conduction limit was observed, which was dependent on board conductivity. The heat transfer coefficients at high aspect ratios exceeded by 14% the prior correlations for upward facing isolate plates, when the ratio of source area to perimeter was used as the significant length scale, and a stronger dependence than Ra1/4 was measured. Classical correlations for shallow differentially heated enclosure were not satisfactory in describing the dependence on enclosure height. With increasing board conductivity, board thermal spreading increased the effective source size so that the discretely heated board heat transfer coefficients tended towards the behavior of the classical uniformly heated board. New first-order thermal design formulae were derived for determining peak temperatures of sources on conducting substrates, and for determining the associated thermal "zone of influence" or "footprint." The board heat spreading was accounted for by using its effective "thermal footprint" radius and correlations for conjugate heat transfer based on this length scale were successful in describing the behavior of the average Nusselt number at large enclosure heights. Some qualitative flow visualization was also performed and representative results are shown.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Aerospace and Mechanical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.