• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A physically-based snow model coupled to a general circulation model for hydro-climatological studies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3050315_sip1_m.pdf
    Size:
    2.872Mb
    Format:
    PDF
    Download
    Author
    Jin, Jiming
    Issue Date
    2002
    Keywords
    Hydrology.
    Physics, Atmospheric Science.
    Advisor
    Sorooshian, Soroosh
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A Snow-Atmosphere-Soil Transfer (SAST) model has been developed to extend the point snowmelt model to vegetated areas using the parameterization concepts of the Biosphere-Atmosphere Transfer Scheme (Dickinson et al. 1993). The model applications for short-grass and forest fields show that the simulated surface temperature, albedo, and snow depth have close agreement with observations. In addition, because of biases in simulated runoff in the high-latitudes, a Shuffled Complex Evolution (Sorooshian et al. 1993) scheme for automatic calibration has been connected with the SAST model to determine the realistic distribution of runoff components from different soil layers and search the optimized parameter set. The calibrated runoff closely matches observations. Because the Community Climate Model version 3 (CCM3) coupled with the SAST model overestimates snow depth and precipitation and underestimates surface temperature over the Rocky Mountains, remotely sensed snow depth data have been assimilated in the model to alleviate model discrepancies based on energy and mass balances. The improved surface temperature simulations result from the decreased snowmelt and albedo in winter and spring and from the weakened evaporation in summer due to drier soil. Meanwhile, modeled summer precipitation over the Rocky Mountains has a minor improvement. The relationship between the variations of tropical Pacific SST and snowpack anomalies in the western United States (U.S.) has been studied by comparing observations and CCM3 output. The results indicate that in the northwestern U.S., the warm tropical Pacific phase of the El Nino-Southern Oscillation (ENSO) is associated with diminished snowpack while its cool phase is related to enhanced snowpack. This relationship is largely determined by winter precipitation variability for the observations; however, it relies heavily on the variations of temperature due to the biases in atmospheric patterns for the model output. In the southwestern U.S., positive snowpack anomalies for both observations and simulations result from the strong warm phase of the ENSO and negative ones are connected with exaggerated local precipitation in fall.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology and Water Resources
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.