• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigation of the mechanisms controlling chromate and arsenate removal from water using zerovalent iron media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3053889_sip1_m.pdf
    Size:
    2.427Mb
    Format:
    PDF
    Download
    Author
    Melitas, Nikos
    Issue Date
    2002
    Keywords
    Engineering, Environmental.
    Advisor
    Farrell, James
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This research investigated the mechanisms controlling chromate and arsenate removal by zerovalent iron media. The removal kinetics of aqueous Cr(VI) and As(V) were studied in batch experiments for initial concentrations ranging from 100 to 10,000 μg/L. Removal kinetics were also studied in columns packed with zerovalent iron filings over this same concentration range. Electrochemical analyses were used to investigate the electron transfer reactions occurring on the iron surface, and to determine the effect of chromate and arsenate on the iron corrosion behavior. The removal mechanism for chromate involved reduction to Cr(III) and the formation of hydroxide precipitates. Increasing chromate concentrations resulted in decreasing removal rates due to iron surface passivation. Even at low concentrations, chromate acts as a corrosion inhibitor and decreases iron corrosion rates. The condition of the iron surface prior to exposure to chromate determined the chromium removal kinetics. Air-formed oxides significantly inhibited chromate removal, whereas oxides formed in anaerobic, chromate-free water resulted in higher removal rates. Although direct reduction of chromate at cathodic sites on the iron surface was observed at early elapsed times, chromate removal eventually became limited by the rate at which Fe²⁺ could be generated at anodic sites. The removal mechanism for arsenate did not involve reduction and was due to the formation of inner-sphere, bidentate complexes with iron corrosion products. At low arsenate concentrations the rate of arsenate removal was limited by diffusion to adsorption sites. At high concentrations the rate of arsenate removal was limited by the rate of adsorption site generation resulting from iron corrosion. Adsorbed arsenate blocked electroactive sites on the iron surface and decreased iron corrosion rates. Arsenate is expected to remain as the principal adsorbed species in iron filter media because electrochemical reduction of As(V) to As(III) is not favorable under the conditions relevant to freely corroding iron.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical and Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.