• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Accretion processes around supermassive black holes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3060979_sip1_m.pdf
    Size:
    4.298Mb
    Format:
    PDF
    Download
    Author
    Liu, Siming
    Issue Date
    2002
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Melia, Fulvio
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Active Galactic Nuclei (AGNs) are believed to be powered by accretion onto supermassive black holes (BHs). With the development in high resolution observations over a broad frequency range, it is now tenable to study the corresponding physical processes in detail. We find that the emission from the closest supermassive BH candidate, Sagittarius A*, a compact radio source presumably accreting from stellar winds prevailing at the Galactic Center, can be explained as due to a quasi-spherical accretion flow, which circularizes to form a small magnetized accretion disk near the BH's event horizon. The mm/sub-mm and X-ray emissions are produced via thermal synchrotron processes and their self-Comptonization, respectively, in the inner ten Schwarzschild radii of the resultant Keplerian structure. The cm radio emission, however, appears to be produced by non-thermal synchrotron processes in the circularization zone. The recently detected X-ray flare seems to indicate a transient enhancement of mass accretion rate through the inner accretion disk. The 106-day cycle seen at 2.0 cm and 1.3 cm, on the other hand, suggests that the disk is precessing around a spinning BH, whose spin may be determined by timing observation of Sgr A* at mm/sub-mm wavelengths. Our tentative observational result is consistent with this magnetized disk model. The supermassive BH M31*, a compact radio source in the nucleus of M31, has many features in common with Sgr A*, yet their differences are significant. We show that the accretion model being developed for Sgr A* comprises two branches of solutions, distinguished by the relative importance of cooling compared to compressional heating at the capture radius. Sgr A* is presumably a 'hot' BH. While M31* seems to be a member of the 'cold' BH family. The study of the nuclei in radio galaxies reveals many new characteristics of the large scale accretion flows. In NGC 4261, we show that a turbulence-dominated disk, illuminated by its AGN, can not only account for the observed sub-parsec scale radio gap in the core, but also produce the optical broad lines emitted from the region. However, the prominent radio jets distinguish such BHs from those in the compact radio sources. The relativistic jets are probably driven by the action of supermassive, fast spinning BHs. Our study on NGC 6251* indicates that the initial ejection of matter can be associated with the thermal expansion of the accreted gas, which is heated by a spinning BH near its even horizon.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.