• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Two molecular mechanisms of apoptosis resistance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3073200_sip1_m.pdf
    Size:
    2.486Mb
    Format:
    PDF
    Download
    Author
    Butts, Brent Daniel
    Issue Date
    2002
    Keywords
    Biology, Molecular.
    Biology, Cell.
    Health Sciences, Oncology.
    Advisor
    Briehl, Margaret M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Many cancer cells develop resistance to apoptosis. It is important to understand how this phenotype develops, so that these cancers can be effectively treated. The results presented in this dissertation describe two molecular mechanisms of apoptosis resistance. A mouse keratinocyte model system consisting of the benign 308 parental cell line and two malignantly progressed variants (6M90 and 6R90 cells) were used to explore the relationship between reactive oxygen species (ROS) and apoptosis resistance. Previous work showed elevated basal levels of ROS in 6M90 and 6R90 cells. The results shown here demonstrate increased resistance to UV-induced apoptosis of the variants compared to the parental line. Pharmacological and genetic approaches were used to decrease the steady-state levels of ROS in the two malignant cell lines. This increased their sensitivity to apoptosis. ROS are implicated in the activation of the anti-apoptotic Akt kinase. 6M90 and 6R90 cells had higher levels of activated Akt. Modulation of ROS levels in the 6M90 and 6R90 cells decreased the levels of activated Akt. These studies provide a molecular mechanism to explain the chronically elevated ROS and apoptosis resistance seen in many tumors. Another mechanism by which tumor cells resist apoptosis is to upregulate the anti-apoptotic protein Bcl-2. A putative response element (PPRE) for the peroxisome proliferator activated nuclear receptor (PPAR) was found in the 3' UTR of bcl-2. Further experiments indicated that the gamma subtype of PPAR bound the putative PPRE and could activate transcription. In cells transfected with PPARgamma, increased levels of bcl-2 mRNA and Bcl-2 protein were seen as compared to empty vector-transfected cells. When treated with bile acids to induce apoptosis, the PPARgamma-transfected cells were twice as resistant as empty vector-transfected cells. These studies show, for the first time, that a sequence within the 3' end of the bcl-2 gene can regulate transcription of the gene through interactions with PPARgamma. These findings may be particularly relevant in colon cancer, where PPARgamma and Bcl-2 are often overexpressed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cancer Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.