• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Deadenylation and mRNA decay in Saccharomyces cerevisiae

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3010227_sip1_m.pdf
    Size:
    2.825Mb
    Format:
    PDF
    Download
    Author
    Tucker, Morgan Dean
    Issue Date
    2001
    Keywords
    Biology, Molecular.
    Advisor
    Parker, Roy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The process of mRNA turnover is a critical component of the regulation of gene expression. In the past few years, a discrete set of pathways for the degradation of polyadenylated mRNAs, in eukaryotic cells have been described. The major pathway of mRNA degradation in yeast occurs by deadenylation of the mRNA, which primarily leads to a decapping reaction, thereby exposing the mRNA to rapid 5' to 3' exonucleolytic degradation. A critical step in the primary pathway is decapping, since it effectively terminates the mRNA's existence and is the site of numerous control inputs. I discuss the properties of the decapping enzyme and how its activity is regulated to give rise to differential mRNA turnover. The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. In this work, I demonstrate by several criteria that CCR4 and CAF1 encode critical components of the major cytoplasmic deadenylase in yeast. First, both Ccr4p and Caf1p are required for normal mRNA deadenylation in vivo. Second, both proteins localize to the cytoplasm. Third, Caf1p co-purifies with poly(A) specific exonuclease activity, and this activity is dependent on the presence of Ccr4p. Interestingly, because Ccr4p and Caf1p have been shown previously to interact with transcription factors, these results suggest an unexpected link between mRNA synthesis and turnover. Both the Ccr4 and Caf1 proteins have significant homology to known exonucleases, in this work I demonstrate by several criteria that CCR4 encodes the catalytic subunit of the deadenylase. First, over-expression of Ccr4p rescues the deadenylation defects of a caf1Δ strain, indicating that Caf1p is not essential for deadenylation. Second, purification of Ccr4p co-purifies with poly(A) specific exonuclease activity, and this activity is not dependent on the presence of Caf1p. Third, point mutants in predicted catalytic residues of the Ccr4p exonuclease domain result in deadenylation defects in vivo and in vitro. The strong conservation of Ccr4p and Caf1p in other eukaryotes suggests that they will function in the process of deadenylation in other organisms.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.