We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.
Studies on tumor promotion and progression: The importance of signaling by activator protein-1 and prostaglandin E₂
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
It is clear that non-melanoma skin cancers have a significant impact on the health of the general population. With over one million new cases expected this year the extent of the problem is increasing. Extensive research on the molecular mechanisms of tumor promoting agents has yielded a large body of evidence suggesting that activity of the transcription factor activator protein-1 is central to development of benign lesions. Recently, a dominant negative c jun, TAM-67, has been shown to block tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. In order to determine if this is a more general phenomenon, we examined the effects of TAM-67 on okadaic acid induced tumor promotion. We found that TAM-67 could effectively inhibit tumorigenesis induced by okadaic acid. In order to further characterize the activity of TAM-67, we identified its molecular mechanism of action in suppressing okadaic acid induced activator protein-1 activity. These studies led to identification of squelching as the mechanism of action. This work also revealed that TAM-67 could interact with all the proteins of the Jun and Fos families as well as non-activator protein-1 proteins. Thus, TAM-67 may be able to affect multiple pathways including activator protein-1. Other work has identified prostaglandin signaling as a major factor in the development of non-melanoma skin cancer. We identified production of prostaglandin E2 as one of the abnormalities in a model of skin tumor progression. The cell lines examined were able to make prostaglandin E2, and also expressed receptors for it. We therefore examined the importance of this apparent autocrine loop and found that the cells that produce prostaglandin E2 depend on signaling from the prostaglandin E2 receptor EP1 for a normal in vitro growth rate. Both transactivation by activator protein-1 and signaling by prostaglandins are involved in chemically induced skin carcinogenesis. The magnitude of the problem ensures that demand for new treatments will only increase. Obtaining a clear understanding of the molecular events associated with the growth and transformation of cells from normal to benign to malignant is crucial to identifying novel treatment and prevention strategies.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegePharmacology & Toxicology