• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of DRIFTS technique with PLS regression for determination of added mineral nitrogen in soil

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089904_sip1_m.pdf
    Size:
    6.910Mb
    Format:
    PDF
    Download
    Author
    Boonmung, Suwanee
    Issue Date
    2003
    Keywords
    Agriculture, Soil Science.
    Engineering, Agricultural.
    Advisor
    Riley, Mark R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in both near infrared (NIR) and mid infrared (MIR) has been previously shown to be effective in quantifying soil nitrogen (N) concentrations when calibrated using numerous field soil samples. However, such an approach provides samples that likely contain substantial correlations between physical and chemical properties. To address these concerns, the performance of DRIFTS coupled with PLS regression in NIR regions, 5,000-4,000 cm⁻¹ (2,000-2,500 nm) and 6,500-5,500 cm⁻¹ (1,540-1,820 nm), and the M1R region, 3,400-2,400 cm⁻¹ (2,940-4,170 nm), was assessed first through analysis of the concentration of mineral N (ammonium (NH₄⁺) (0-50 ppm) and nitrate (NO₃⁻) (0-200 ppm)) artificially incorporated into a series of silica sand and clay samples with a consistent particle size. The influence of the reduction of sand particles to silt was also analyzed quantitatively. Subsequently, the Pima clay loam soil was evaluated and the concentration ranges of 0-200 ppm NH₄⁺ and 180-1,000 ppm NO₃⁻ were added in soil samples. All three regions provided good measurement of NH₄⁺ but the MIR region was significantly more useful for NO₃⁻ measurement in sand. The detection limits for the measurement of mineral N in sand with particle sizes within 212-300 μm using the MIR region were 9 ppm NH₄⁺ (7 ppm NH₄-N) and 36 ppm NO₃⁻ (8 ppm NO₃-N). For silt (particles less than 53 mum), the most effective model was the MIR region for both NH₄⁺ and NO₃⁻ measurements, yielding the detection limits of 15 ppm NH₄⁺ (12 ppm NH₄-N) and 50 ppm NO₃⁻ (11 ppm NO₃-N). The MIR region also performed reasonably well with soil samples but both NIR regions provided poor results. The detection limits for NH₄⁺ and NO₃⁻ measurements in soil were 100 ppm NH₄⁺ (78 ppm NH₄-N) and 330 ppm NO₃⁻ (75 ppm NO₃-N) with the correlation coefficients (R²) of roughly 80% and 90%, respectively. The spectral range of 2,900-2,400 cm⁻¹ was the effective common range for mineral N measurement in sand, silt, and soil samples.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Agricultural & Biosystems Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.