• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The physics and chemistry of solar nebula shock waves: Applications to chondrule formation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089936_sip1_m.pdf
    Size:
    2.627Mb
    Format:
    PDF
    Download
    Author
    Ciesla, Fred J.
    Issue Date
    2003
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    Hood, Lon L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chondrules are a major component of primitive meteorites and are thought to be among the first solids to have formed in the solar system. However, the circumstances around the formation of chondrules have remained a mystery for the 200 years that chondrules have been known to exist. In this work, a model is developed to show that shock waves in the nebula could have been responsible for the complex thermal processing that chondrules are thought to have experienced. By studying different sizes of shock waves, it is shown that for shock waves to have been the dominant chondrule producing mechanism in the nebula, the shocks would have to be large (>1000 km) in size. Such shocks may be linked to the formation or evolution of Jupiter within the solar nebula. In addition, the thermal evolution of chondrules by shock waves can explain the geometric properties of compound chondrules if these objects formed by the collisions of molten chondrules. Finally, for the first time, the case of a shock wave passing through an icy region of the solar nebula is studied. It is found that such a situation may have produced conditions that would allow silicates to be hydrated on very short time scales, explaining the presence of phyllosilicates in the accretionary rims around chondrules in CM chondrites.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.