Show simple item record

dc.contributor.advisorSorooshian, Sorooshen_US
dc.contributor.authorHogue, Terri S.
dc.creatorHogue, Terri S.en_US
dc.date.accessioned2013-05-09T10:44:50Z
dc.date.available2013-05-09T10:44:50Z
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/10150/289890
dc.description.abstractSoil-Vegetation-Atmosphere-Transfer Schemes (SVATS) are used in global climate studies to simulate and help understand the complex interactions between the climate and the biosphere. There currently exists a multitude of SVATS of varying complexity differing in terms of the modeled physics and the manner and sophistication with which the processes are represented. This analysis uses systems-based multi-criteria techniques to investigate the performance and sensitivity of various SVATS and their parameters. Results indicate that, once complexity reaches a certain level, incorporating more physics does not necessarily result in improved simulations or reduced errors and that several parameters in the models are insensitive regardless of the input data (i.e., vegetation type). To better understand SVATS performance in semi-arid regions, and to evaluate the various impacts of data on the parameter estimation problem, an intensive calibration and validation study is undertaken. Findings show that calibrated parameters result in improved performance over default, proxy site parameters result in similar performance for many time periods, and there is a need to include wet periods with elevated latent heat to capture the variability of climatic conditions such as the monsoon and El Nino winters. Last, a preliminarily investigation of the performance of the BATS2 model is undertaken to evaluate the capabilities to simulate carbon (along with energy and water) fluxes in semi-arid regions. Results show poor performance for carbon flux simulations and that improvements are needed to better represent C4 vegetation for semi-acid regions. Future research will be directed toward integrated modeling (carbon, energy, and water) in semi-arid regions.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectHydrology.en_US
dc.subjectEnvironmental Sciences.en_US
dc.titleA multi-criteria evaluation of land-surface models and application to semi-arid regionsen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest3089966en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b44422143en_US
refterms.dateFOA2018-06-12T00:48:51Z
html.description.abstractSoil-Vegetation-Atmosphere-Transfer Schemes (SVATS) are used in global climate studies to simulate and help understand the complex interactions between the climate and the biosphere. There currently exists a multitude of SVATS of varying complexity differing in terms of the modeled physics and the manner and sophistication with which the processes are represented. This analysis uses systems-based multi-criteria techniques to investigate the performance and sensitivity of various SVATS and their parameters. Results indicate that, once complexity reaches a certain level, incorporating more physics does not necessarily result in improved simulations or reduced errors and that several parameters in the models are insensitive regardless of the input data (i.e., vegetation type). To better understand SVATS performance in semi-arid regions, and to evaluate the various impacts of data on the parameter estimation problem, an intensive calibration and validation study is undertaken. Findings show that calibrated parameters result in improved performance over default, proxy site parameters result in similar performance for many time periods, and there is a need to include wet periods with elevated latent heat to capture the variability of climatic conditions such as the monsoon and El Nino winters. Last, a preliminarily investigation of the performance of the BATS2 model is undertaken to evaluate the capabilities to simulate carbon (along with energy and water) fluxes in semi-arid regions. Results show poor performance for carbon flux simulations and that improvements are needed to better represent C4 vegetation for semi-acid regions. Future research will be directed toward integrated modeling (carbon, energy, and water) in semi-arid regions.


Files in this item

Thumbnail
Name:
azu_td_3089966_sip1_m.pdf
Size:
10.38Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record