• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Transverse mode properties of lasers with Gaussian gain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3089981_sip1_m.pdf
    Size:
    5.093Mb
    Format:
    PDF
    Download
    Author
    Maes, Carl F.
    Issue Date
    2003
    Keywords
    Physics, Optics.
    Advisor
    Wright, Ewan M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The modes and beam characteristics of a Gaussian gain laser resonator are analyzed. Such a gain is typically associated with an end pumped solid state laser. The beam propagation method is used to find the eigenmodes. The eigenmodes are non Gaussian in appearance and differ greatly from the modes of the same cavity with a quadratic gain. It is found that the cavity geometry strongly influences mode formation around degenerate cavity geometries throughout a broad range of operational parameters. The beam propagation method is used to evolve the field through the resonator, resulting in computation of the nonorthogonal eigenmodes. This permits evaluation of the excess noise dependence on geometric cavity parameters such as length and focal length. It is shown that the beam quality M² and Petermann K factor are related and are anticorrelated at degeneracies. An explanation is given based on the self Fourier transforming properties of degenerate cavity locations. It is shown how the empty cavity properties of transverse mode degeneracies are not revealed with a quadratic gain, but are strikingly present with a Gaussian gain. A confocal cavity is studied in detail and found to have the property that forces K to unity even in the presence of strong gains and narrow pump widths. The interplay between the diffraction effects of a geometrically stable cavity and the Gaussian gain will be studied to reveal the nature and implications of the non-normal modes encountered.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.