• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Crystal chemical control on intra-structural copper isotope fractionation in natural copper-iron-sulfur minerals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3090030_sip1_m.pdf
    Size:
    7.407Mb
    Format:
    PDF
    Download
    Author
    Young, Steven E.
    Issue Date
    2003
    Keywords
    Engineering, Metallurgy.
    Geochemistry.
    Advisor
    Ruiz, Joaquin
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The nature of Cu isotope fractionation in natural Cu-Fe-S minerals was investigated through acid ferric sulfate leaching of copper ore from Morenci, Arizona. Copper isotope composition of the derived solutions varies from δ⁶⁵Cu = 0.47‰ to 5.21‰ over the course of progressive copper extraction. High δ⁶⁵Cu values characterize solutions collected in the first half of the leach, while the solutions collected between 35% and 45% copper recovery exhibit lower δ⁶⁵Cu values. This general pattern was observed for both bacterially-mediated and abiotic leaching. Sulfate solutions derived from dissolving pure djurleite show variable Cu isotope compositions as well, although the range is protracted from δ⁶⁵Cu = 0.01‰ to 1.21‰. As the Cu:S ratio of the remaining sulfide decreases, crystal structure parameters change as mineralogy passes through a series of nonstoichiometric copper sulfides. Mineralogy converges to yarrowite near 44% copper dissolution. Crystal chemical studies show that distribution of the two copper-sulfur bond coordination geometries, triangular planar and tetrahedral, in the copper sulfides, approximately corresponds to changes in δ⁶⁵Cu of the leachates. In particular, the proportion of CuS3 relative to CuS4 groups decreases from Cu/S = 2.00 (chalcocite) to 1.40 (geerite). Between Cu/S = 1.40 to 1.00 (covellite), the relative proportion of CuS3 groups increases slightly. Connection between coordination number and Cu isotope fractionation implies affinity of CuS₃ groups for the heavier, ⁶⁵Cu, isotope. This can be justified through bond length-bond strength arguments. Solutions from bornite dissolution vary from δ⁶⁵Cu = -0.79‰ to 1.14‰, with the largest values associated with solutions from early stage of reaction (up to 15% copper removal). Around 25% dissolution, δ⁶⁵Cu of the solution approaches that of the original bornite (δ⁶⁵Cu = 0.02‰). This is explained by disappearance of all remaining CuS₃ groups. Sulfur isotope compositions of solutions and sulfides derived from djurleite leaching were determined to investigate the possibility of intra-mineral fractionation. Very soon after reaction initiation, δ³⁴S of both sulfur reservoirs reach a steady-state with sulfate solutions about 2‰ enriched in ³⁴S relative to residual sulfide. Unlike the case of Cu isotopes, the main partitioning affecting S isotopes is exchange between sulfate and sulfide.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.