• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An evaluation of soil erosion hazard: A case study in Southern Africa using geomatics technologies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3106981_sip1_m.pdf
    Size:
    5.596Mb
    Format:
    PDF
    Download
    Author
    Eiswerth, Barbara A.
    Issue Date
    2003
    Keywords
    Physical Geography.
    Agriculture, Soil Science.
    Environmental Sciences.
    Remote Sensing.
    Advisor
    Marsh, Stuart E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Accelerated soil erosion in Malawi, Southern Africa, increasingly threatens agricultural productivity, given current and projected population growth trends. Previous attempts to document soil erosion potential have had limited success, lacking appropriate information and diagnostic tools. This study utilized geomatics technologies and the latest available information from topography, soils, climate, vegetation, and land use of a watershed in southern Malawi. The Soil Loss Estimation Model for Southern Africa (SLEMSA), developed for conditions in Zimbabwe, was evaluated and used to create a soil erosion hazard map for the watershed under Malawi conditions. The SLEMSA sub-models of cover, soil loss, and topography were computed from energy interception, rainfall energy, and soil erodibility, and slope length and steepness, respectively. Geomatics technologies including remote sensing and Geographic Information Systems (GIS) provided the tools with which land cover/land use, a digital elevation model, and slope length and steepness were extracted and integrated with rainfall and soils spatial information. Geomatics technologies enable rapid update of the model as new and better data sets become available. Sensitivity analyses of the SLEMSA model revealed that rainfall energy and slope steepness have the greatest influence on soil erosion hazard estimates in this watershed. Energy interception was intermediate in sensitivity level, whereas slope length and soil erodibility ranked lowest. Energy interception and soil erodibility were shown by parameter behavior analysis to behave in a linear fashion with respect to soil erosion hazard, whereas rainfall energy, slope steepness, and slope length exhibit non-linear behavior. When SLEMSA input parameters and results were compared to alternative methods of soil erosion assessment, such as drainage density and drainage texture, the model provided more spatially explicit information using 30 meter grid cells. Results of this study indicate that more accurate soil erosion estimates can be made when: (1) higher resolution digital elevation models are used; (2) data from improved precipitation station network are available, and; (3) greater investment in rainfall energy research.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Arid Lands Resources Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.