• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A two-dimensional, self-consistent model of galactic and anomalous cosmic rays in the solar wind

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3010247_sip1_m.pdf
    Size:
    3.113Mb
    Format:
    PDF
    Download
    Author
    Florinski, Vladimir A.
    Issue Date
    2001
    Keywords
    Physics, Astronomy and Astrophysics.
    Physics, Fluid and Plasma.
    Advisor
    Jokipii, J. R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We have developed a two-dimensional heliospheric model that includes galactic and anomalous cosmic rays as well as pickup ions. Cosmic rays are described via their number density in phase space, rather than pressure, as every preceding 2-D model has done. Cosmic-ray pressure is included in the total energy budget, allowing us to compute dynamical effects of the energetic particles on the solar wind. We include the magnetic field as well in order to consistently compute cosmic-ray diffusion coefficients. To accommodate' lower-energy cosmic rays with their short diffusion length, we implemented an adaptive mesh refinement code featuring improved spatial resolution near the termination shock. Our simulations show that galactic cosmic rays could substantially change the solar wind flow in the outer heliosphere. In particular, the solar wind is deflected towards the ecliptic plane during the positive solar cycle, resulting in faster wind near the current sheet. This is a result of large latitudinal gradients in the cosmic-ray pressure, caused by the difference in cosmic-ray drift patterns over latitude. We also found that anomalous cosmic rays have a minor effect on the solar wind. Their pressure is not sufficient to modify the termination shock significantly, a conclusion based on comparing model cosmic-ray spectra with observations. However, anomalous cosmic-ray acceleration occurs somewhat differently than thought before, and shock drift effects are not prominent. The spectra of these particles have an enhancement near the cutoff, that is not caused by shock drifts.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.