• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Finite-aperture tapered unstable resonator lasers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3108883_sip1_m.pdf
    Size:
    4.572Mb
    Format:
    PDF
    Download
    Author
    Bedford, Robert George
    Issue Date
    2003
    Keywords
    Physics, Optics.
    Advisor
    Fallahi, Mahmoud
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The development of high power, high brightness semiconductor lasers is important for applications such as efficient pumping of fiber amplifiers and free space communication. The ability to couple directly into the core of a single-mode fiber can vastly increase the absorption of pump light. Further, the high mode-selectivity provided by unstable resonators accommodates single-mode operation to many times the threshold current level. The objective of this dissertation is to investigate a more efficient semiconductor-based unstable resonator design. The tapered unstable resonator laser consists of a single-mode ridge coupled to a tapered gain region. The ridge, aided by spoiling grooves, provides essential preparation of the fundamental mode, while the taper provides significant amplification and a large output mode. It is shown a laterally finite taper-side mirror (making the laser a "finite-aperture tapered unstable resonator laser") serves to significantly improve differential quantum efficiency. This results in the possibility for higher optical powers while still maintaining single-mode operation. Additionally, the advent of a detuned second order grating allows for a low divergent, quasicircular output beam emitted from the semiconductor surface, easing packaging tolerances, and making two dimensional integrated arrays possible. In this dissertation, theory, design, fabrication, and characterization are presented. Material theory is introduced, reviewing gain, carrier, and temperature effects on field propagation. Coupled-mode and coupled wave theory is reviewed to allow simulation of the passive grating. A numerical model is used to investigate laser design and optimization, and effects of finite-apertures are explored. A microfabrication method is introduced to create the FATURL in InAlGaAs/-InGaAsP/InP material emitting at about 1410 nm. Fabrication consists of photolithography, electron-beam lithography, wet etch and dry etching processes, metal and dielectric electron-beam evaporation, and rapid-thermal annealing. FATURLs are compared to infinite aperture TURLs, and show significant improvements in differential quantum efficiency (more than 40%) under pulsed-current operation. Far-field measurements show diffraction-limited divergence up to at least 2.3 x Ith, and spectral characteristics show good control over the longitudinal mode spectrum. Finally, several modifications to the laser design and fabrication are presented to improve laser performance.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.