• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Studies on the synthesis and the transport properties of organic materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3108913_sip1_m.pdf
    Size:
    3.706Mb
    Format:
    PDF
    Download
    Author
    Hreha, Richard Douglas
    Issue Date
    2003
    Keywords
    Chemistry, Organic.
    Engineering, Electronics and Electrical.
    Advisor
    Marder, Seth R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A series of photo-crosslinkable arylamine-based hole-transport copolymers has been synthesized. The synthetic methodology employed allows for the redox potential of the polymer to be tuned by the incorporation of electron-donating or withdrawing moieties. Upon exposure to ultraviolet radiation, the copolymers become insoluble, as evidenced by ultraviolet-visible absorption spectroscopy. The ability to switch the solubility of the polymers enable one to photo-pattern the materials, a feature that is useful for the fabrication of multilayer organic light-emitting diodes (OLEDs) by solution processing techniques. OLEDs using the methacrylate based hole-transport polymers have been fabricated and the performance of the devices has been evaluated. 2,7-Bis(p-methoxyphenyl- m'-tolylamino)-9,9-dimethylfluorene, 2,7-bis(phenyl- m'-tolylamino)-9,9-dimethylfluorene, and 2,7-bis( p-fluorophenyl-m'-tolylamino)-9,9-dimethylfluorene have been synthesized using palladium-catalyzed reaction of the appropriate diarylamines with 2,7-dibromo-9,9-dimethylfluorene. These molecules have glass-transition temperatures 15-20°C higher than those for their biphenyl-bridged analogues, and are 0.11-0.14 V more easily oxidized. The hole mobilities of the three fluorene derivatives (blended with polystyrene) have been measured by the time-of-flight technique and are lower than the corresponding biphenyl-bridged analogues. Analysis of transport data according to the disorder formalism yields parameters similar to those for the biphenyl species, but with lower zero-field mobility values. Density functional theory based calculations suggest that the enforced planarization of the fluorene bridge leads to a larger reorganization energy, due to increased vibration contributions in the bridge for the neutral/cation electron-exchange reaction relative to the analogous biphenyl-bridged system. OLEDs have been fabricated using blends of the fluorene-bridged compounds with polystyrene as the hole-transport layer and Alq₃ as electron-transport layer and lumophore. Device performance shows a correlation with the ionization potential of the amine materials paralleling that seen in biphenyl-based systems. Monomers based on the fluorene bridged arylamine-based hole transport materials were also synthesized. Monomers having methacrylate, styrene, and norbornene moieties have been synthesized and their hole mobilities measured. Adding a methacrylate or norbornene moiety had no effect on the hole mobility. The mobility of the norbornene polymer was significantly higher than the methacrylate polymer.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.