• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Protein targets and metabolites of 1,1-dichloroethylene

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3010260_sip1_m.pdf
    Size:
    3.641Mb
    Format:
    PDF
    Download
    Author
    Jones, Juliet Ann
    Issue Date
    2001
    Keywords
    Health Sciences, Toxicology.
    Chemistry, Analytical.
    Advisor
    Liebler, Daniel C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Xenobiotics and their metabolites are capable of covalent modification of proteins that may lead to cellular injury. Determining the identity of modified proteins, however, has to date been hindered by available analytical instrumentation. Advances in mass spectrometry now allow for routine analysis of large biomolecules. This has given rise to the field of proteomics , which uses mass spectrometry in conjunction with various separation techniques to gain information about large numbers of proteins. This dissertation describes the development of a new proteomic methodology to identify unknown protein targets and its application to identifying protein targets and metabolites of 1,1-dichloroethylene (1,1-DCE). 1,1-DCE undergoes P450 bioactivation in hepatocytes to produce 1,1-DCE oxide and 2-chloroacetyl chloride. These either modify proteins directly, or form the glutathione conjugate S-(2-chloroacetyl)glutathione, which in turn is capable of protein cysteinyl sulfhydryl alkylation. In animals, exposure to 1,1-DCE results in selective injury to the biliary canalicular membrane. Biochemical and physiological evidence suggests damage to the canalicular membrane transport proteins. Putative 1,1-DCE metabolite adducts, including S-carboxymethylated and 2-chloroacetylated peptides and GSCOCH₂-S-cys-peptide adducts, were synthesized using model peptides containing one or two cysteines. The adducts were analyzed by ESI-MS-MS and resulted in fragmentation patterns characteristic of the adduct moiety, including fragment ions, losses from the parent ion and pairs of ions separated by the mass of the modified cysteine residue. The data reduction algorithm SALSA was developed to search for user-specified fragmentation characteristics in MS-MS data dependent scans. Bile samples obtained from animals exposed to 1,1-DCE were analyzed by ESI-MS-MS. SALSA was then used to search the data for spectra containing adduct-specific fragmentation. Five hepatic S-carboxymethylated proteins were identified, as were the 1,1-DCE metabolites S-carboxymethylglutathione, S-(cysteinylacetyl)glutathione and the cyclic product of the intermolecular rearrangement of S-(2-chloroacetyl)glutathione. This work demonstrates the use of mass spectrometry to characterize unknown, modified proteins in complex mixtures without the use of radio- or immunochemical labeling.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.