Show simple item record

dc.contributor.advisorBrown, Robert H.en_US
dc.contributor.authorBarnes, Jason Wayne
dc.creatorBarnes, Jason Wayneen_US
dc.date.accessioned2013-05-09T10:52:09Z
dc.date.available2013-05-09T10:52:09Z
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10150/290019
dc.description.abstractFor my Ph.D. research I investigated the prospects for characterizing transiting extrasolar giant planets from their transit lightcurves. Hubble Space Telescope photometry of transiting planet HD209458b revealed that the planet has no moons. Here, I show that tidal orbital evolution of moons limits their lifetimes, and hence that no moons larger than Amalthea in size should survive around HD209458b, consistent with observations. I then calculate the detectability and scientific potential of planetary rings and oblateness. Oblateness will prove difficult to reliably detect, even with the Hubble Space Telescope. However, large Saturn-like ring systems should be easy to find around transiting extrasolar giant planets if such rings exist.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
dc.titleCharacterizing transiting extrasolar giant planets: On companions, rings, and love handlesen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest3131584en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.namePh.D.en_US
dc.identifier.bibrecord.b46709083en_US
refterms.dateFOA2018-08-20T02:52:50Z
html.description.abstractFor my Ph.D. research I investigated the prospects for characterizing transiting extrasolar giant planets from their transit lightcurves. Hubble Space Telescope photometry of transiting planet HD209458b revealed that the planet has no moons. Here, I show that tidal orbital evolution of moons limits their lifetimes, and hence that no moons larger than Amalthea in size should survive around HD209458b, consistent with observations. I then calculate the detectability and scientific potential of planetary rings and oblateness. Oblateness will prove difficult to reliably detect, even with the Hubble Space Telescope. However, large Saturn-like ring systems should be easy to find around transiting extrasolar giant planets if such rings exist.


Files in this item

Thumbnail
Name:
azu_td_3131584_sip1_m.pdf
Size:
2.877Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record