• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ions, isotopes, and metal cyanides: Observational and laboratory studies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3132252_sip1_m.pdf
    Size:
    3.777Mb
    Format:
    PDF
    Download
    Author
    Savage, Chandra Shannon
    Issue Date
    2004
    Keywords
    Chemistry, Physical.
    Physics, Astronomy and Astrophysics.
    Advisor
    Ziurys, Lucy M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chemistry in the interstellar medium is very different from the processes which take place in terrestrial settings. Environments such as circumstellar envelopes, molecular clouds, and comets contain diverse and complex chemical networks. The low temperatures (10-50 K) and densities (1-10⁶ cm⁻³) allow normally unstable molecules to exist in significant quantities. At these temperatures, the rotational energy levels of molecules are populated, and thus these species can be detected by millimeter-wave radio astronomy. The detection and quantification of interstellar molecules, including metal cyanides and molecular ions, is the basis of this dissertation work. While conducting observations of CN and ¹³CN to determine the ¹²C/¹³C ratio throughout the Galaxy, it was found that the ratios in photon-dominated regions (PDRs) were much higher than those in nearby molecular clouds. This can be explained by isotope-selective photodissociation, in which the ¹²CN molecules are self-shielded. However, the chemistry in these regions is poorly understood, and other processes may be occurring. In order to understand one of the chemical networks present in PDRs, observations of HCO⁺, HOC⁺, and CO⁺ were made toward several of these sources. Previous studies indicated that the HCO⁺/HOC⁺ ratio was much lower in PDRs, due to the presence of CO⁺. The new observations indicate that there is a strong correlation between CO⁺ and HOC⁺ abundances, which suggests that other molecular ions which have not been detected in molecular clouds may be present in PDRs. There is a significant obstacle to the detection of new interstellar molecular ions, however. The laboratory spectra are virtually unknown for many of these species, due to their inherent instability. Thus, techniques which can selectively detect ionic spectra must be utilized. One such method is velocity modulation, which incorporates an AC electrical discharge to produce and detect ions. Previously, velocity modulation spectroscopy was employed only at infrared wavelengths. The final phase of this dissertation work was to design, build and test a velocity modulation spectrometer which functions at millimeter/sub-mm wavelengths. This system was then used to measure the previously unknown pure rotational spectrum of SH⁺ (X3Σ⁻).
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.