• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Deposition, stabilization and characterization of zirconium oxide and hafnium oxide thin films for high k gate dielectrics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158095_sip1_m.pdf
    Size:
    3.560Mb
    Format:
    PDF
    Download
    Author
    Gao, Yong
    Issue Date
    2004
    Keywords
    Engineering, Materials Science.
    Advisor
    Jackson, Kenneth A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    As the MOS devices continue to scale down in feature size, the gate oxide thickness is approaching the nanometer node. High leakage current densities caused by tunneling is becoming a serious problem. Replacing silicon oxide with a high kappa material as the gate dielectrics is becoming very critical. In recent years, research has been focused on a few promising candidates, such as ZrO₂, HfO₂, Al₂O₃, Ta₂O₅, and some silicates. However, unary metal oxides tend to crystallize at relatively low temperatures (less than 700°C). Crystallized films usually have a very small grain size and high leakage current due to the grain boundaries. The alternatives are high κ oxides which are single crystal or amorphous. Silicates remain amorphous at high temperatures, but have some problems such as phase separation, interface reaction, and lower κ value. In this work, we addressed the crystallization problems of zirconium oxide and hafnium oxide thin films. Both of these two thin films were deposited by DC reactive magnetron sputtering so that very dense films were deposited with little damage. A specially designed system was set up in order to have good control of the deposition process. The crystallization behavior of as-deposited amorphous ZrO₂ and HfO₂ films was studied. It was found that the films tended to have higher crystallization temperature when the films were thinner than a critical thickness of approximately 5 nm. However, it was still well below 900°C. The crystallization temperature was significantly increased by sandwiching the high kappa oxide layer between two silica layers. Ultra thin HfO₂ films of 5nm thickness remained amorphous up to 900°C. This is the highest crystallization temperature which has been reported. The mechanisms for this effect are proposed. Electrical properties of these high kappa dielectric films were also studied. It was found that ultra thin amorphous HfO₂ and ZrO₂ films had superior electrical properties to crystalline films. The leakage current density of ultra thin amorphous films was at least two orders of magnitude lower than that of crystallized films. Amorphous films also showed much less hysteresis in the capacitance-voltage curve than uncapped crystallized films. The mechanisms for the electrical property differences between ultra thin crystalline and amorphous films were studied. Due to successful control of the low dielectric interfacial layer thickness, an effective oxide thickness of 1.2 and 1.4 nm was obtained for HfO₂ and ZrO₂ films, respectively.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science and Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.