• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Behavioral simulation of analog to digital converters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3158172_sip1_m.pdf
    Size:
    4.626Mb
    Format:
    PDF
    Download
    Author
    Zareba, Grzegorz Szczepan
    Issue Date
    2005
    Keywords
    Engineering, Electronics and Electrical.
    Computer Science.
    Advisor
    Palusinski, Olgierd A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The design of high-speed and high-resolution data converters is very difficult due to complexity of architectures used for converting analog signals into their digital representation. Since the introduction of the simplest conversion technique called parallel or flash technique numerous other architectures have been developed, for example n-stage pipeline, reference feed-forward architecture, folding and interpolating technique. The variety of A/D converter architectures additionally complicates design process due to fact that there is no available behavioral simulator, which can be utilized to support verification of particular converter's design. Many effects and imperfections present in A/D converters influence their performance, for example: switching imperfections, finite gain, clock jitter, and switching and coupling (Electro-Magnetic and substrate perturbations). In most cases several simulation tools have to be used to very performance of designed A/D converter. In this work a new methodology for behavioral simulation of A/D converters has been presented. Novel approach in behavioral modeling of A/D converters is based on utilization of Dynamic Linked Libraries (DLLs) to encapsulate behavior of basic modules of A/D converters. Predefined Basic Building Modules (BBMs) of A/D converters such as comparators, folding circuits, analog switches, binary encoders and many others are used to form a behavioral model of various types of A/D converters. Imperfections of BBMs are separated from the simulator framework and included into behavioral description of BBMs kept in DLL modules. Utilization of DLL modules gives a very convenient way for modifying BBMs independently from the simulator framework, and because DLL modules are executable files simulation time is significantly reduced (no translation or interpretation of simulation language commands is needed). Developed Behavioral Simulator of A/D converters is implemented in Visual C++ language and is partially based on an event driven simulation scheme and a data flow technique. The data flow technique was introduced into the simulator architecture to reduce number of events generated during simulation process, which additionally reduces simulation time. Several BBMs have been defined and constructed as DLL modules to support simulation of various types of A/D converters including flash, multi-stage, pipelined, and folding A/D converters.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.