• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DESIGN OF A SPACEBORNE LIGHTNING SENSOR

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8115598_sip1_w.pdf
    Size:
    3.854Mb
    Format:
    PDF
    Download
    Author
    Nagler, Michael N.
    Issue Date
    1981
    Keywords
    Lightning -- Observations.
    Meteorological satellites.
    Astronautics in meteorology.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The design of BOLTS (Broad Area Lightning Telescope Sensor) is presented. This sensor will provide full-time (day/night) coverage of the continental U.S. from a geosynchronous orbit. The average ground resolution will be 8 km and the system will be able to detect ≃ 10⁷ watt strokes during nighttime and ≃ 4 x 10⁷ watt strokes during daytime with a probability of detection of 0.9. We present the system's requirements and projected performance, together with the design rationale. Contrast enhancement is achieved using a narrow band interference filter deposited on a curved surface inside the F/2.5, 101.7 mm optical system. Deposition of the interference layers on the curved surface reduce the passband wandering caused by off-axis bundles. The focal plane constitutes an 800 x 800 element virtual phase CCD array with a multiple outputs option. The central 800 x 400 elements are used for imaging while the outer 2x (800 x 200) elements serve as buffer memory for one frame storage. An additional 2x (800 x 200) array serves for storing a second frame. Signal detection is achieved via a frame-to-frame subtraction algorithm that is hardware implemented immediately following the CCD arrays. An integration time of 5 msec is used, which stems from SNR optimization requirements and from the fact that lightning strokes occur randomly in time and space. The data obtained after frame-to-frame subtraction is subjected to a threshold test and the resulting positive events are digitized and stored in an on-board digital memory using 48 bits/event. Each record contains intensity information over a dynamic range of 4000, location information and time of occurrence information. A prototype instrument built to perform measurements from aboard a U-2 plane is described. The purpose of this instrument is to refine some of the lightning data used in defining the system's parameters. A short discussion about the changes required to expand the design to either a global coverage instrument or a high resolution, smaller field instrument is presented.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.