• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An evaluation of DNA fingerprinting methods for subtyping Salmonella

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9713416_sip1_m.pdf
    Size:
    3.342Mb
    Format:
    PDF
    Download
    Author
    Burr, Mark Daniel, 1949-
    Issue Date
    1996
    Keywords
    Biology, Molecular.
    Biology, Microbiology.
    Advisor
    Pepper, Ian L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The use of DNA typing and fingerprinting methods to identify and discriminate strains of bacteria, including Salmonella, has increased dramatically in recent years. Traditional typing methods, including serotyping and phage typing, have often not adequately discriminated strains, nor have they always identified virulent or antibiotic resistant strains. In a literature review, DNA-based methods, including plasmid analysis, restriction fragment length polymorphism (RFLP) analysis, and polymerase chain reaction (PCR) fingerprinting methods were evaluated. Plasmid analysis, including plasmid profiles and plasmid fingerprints have been shown to be useful primarily in short-term investigations of disease outbreak. However, plasmid profiles or possession of individual plasmids have generally not been good indicators of cell phenotypes overall. RFLP fingerprinting of Salmonella utilizing probes from ribosomal DNA, insertion sequence IS200, or random sequences has been reported. Ribotypes detected with ribosomal probes have generally been shared among different serotypes, whereas IS200 profiles have tended to be more serotype-specific. AP PCR and rep-PCR primers have been shown to discriminate Salmonella isolates, but fingerprints have been more difficult to reproduce and interpret than RFLP fingerprints. Several authors have reported bands of varying intensities, and some faint bands have not been reproducible. Improved methods of resolving and detecting PCR products are necessary. In a laboratory study, 85 environmental Salmonella isolates belonging to 22 serotypes were fingerprinted by 16S RFLP ribotyping, by rep-PCR, using ERIC (enterobacterial repetitive intergenic consensus) primers, and by AP PCR. Ribotypes were shared by isolates from different serotypes. ERIC PCR and one AP PCR primer produced fingerprints that discriminated among the different isolates, but did not identify serotypes. Another AP PCR primer produced simple patterns that neither discriminated isolates, nor identified serotypes. In a second related laboratory study, computer-assisted matching of AP PCR fingerprints of several known isolates was evaluated. Aliquots of the PCR reaction were run in the same and different gels, and the fingerprints bands were scored by two technicians on a presence-absence basis, and matched by creating dendrograms. Although replicate fingerprints of an isolate appeared reproducible, they were not always scored identically. Thus, the computer was not always able to correctly match fingerprints.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.