• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Designing a non-scanning imaging spectrometer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3023520_sip1_m.pdf
    Size:
    3.574Mb
    Format:
    PDF
    Download
    Author
    George, James Dalton
    Issue Date
    2001
    Keywords
    Physics, Optics.
    Advisor
    Dereniak, Eustace L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A non-scanning imaging spectrometer simultaneously captures spatial and spectral information via multiple diffractive orders. Optics image a color scene in a field stop. A collimating lens converts the scene's spatial information into propagation angles. A diffractive disperser multiplexes the scene's spectral information into the propagation angles. A lens focused at infinity images multiple diffractive orders onto a large sensor array, which cannot distinguish the wavelength of incident light within the spectral bandpass of the instrument. The pixels of the sensor array collapse the two-spatial, one-spectral dimensions into a discrete, two-dimensional array. This collapsing of three dimensions into two is a mathematical projection. Computed tomography uses projections to reconstruct a three-dimensional object. Hence, this non-scanning imaging spectrometer has become known as the Computed-Tomography Imaging Spectrometer, or CTIS. The results imply nominal spatial and spectral resolution limits. When each projection is considered separately, the Nyquist spatial-sampling criterion provides a resolution limit. The limit cannot be achieved for an arbitrary scene. The highest spectral resolution can be obtained only if the highest spatial frequency is present. The formula that defines what each diffractive order measures is f(λ) ≈ nₓΔₓ fₓ+n(y)Δ(y)f(y) where f(λ) is a Fourier decomposition of the wavelength spectrum across the CTIS spectral bandwidth, fₓ and f(y) are the horizontal and vertical spatial frequencies, nₓ and n(y) are the diffractive-order numbers as would be obtained by crossed diffraction gratings, and Δₓ and Δ(y) are established by the optical design. Derived from a simple model of scalar diffraction, the formula is shown to be consistent with CTIS calibrations using a technique from computed tomography known as the Fourier-crosstalk matrix. The formula extends the definition of what CTIS projections measure to include cross-orders (nₓ and n(y) can both be non-zero) and anamorphic dispersion (Δₓ ≠ Δ(y)).
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.