• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A multiobjective global optimization algorithm with application to calibration of hydrologic models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720569_sip1_c.pdf
    Size:
    40.33Mb
    Format:
    PDF
    Download
    Author
    Yapo, Patrice Ogou, 1967-
    Issue Date
    1996
    Keywords
    Hydrology.
    Engineering, Industrial.
    Operations Research.
    Advisor
    Sorooshian, Soroosh
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation presents a new multiple objective optimization algorithm that is capable of solving for the entire Pareto set in one single optimization run. The multi-objective complex evolution (MOCOM-UA) procedure is based on the following three concepts: (1) population, (2) rank-based selection, and (3) competitive evolution. In the MOCOM-UA algorithm, a population of candidate solutions is evolved in the feasible space to search for the Pareto set. Ranking of the population is accomplished through Pareto Ranking, where all points are successively placed on different Pareto fronts. Competitive evolution consists of selecting subsets of points (including all worst points in the population) based on their ranks and moving the worst points toward the Pareto set using the newly developed multi-objective simplex (MOSIM) procedure. Test analysis on the MOCOM-UA algorithm is accomplished on mathematical problems of increasing complexity and based on a bi-criterion measure of performance. The two performance criteria used are (1) efficiency, as measured by the ability of the algorithm to converge quickly and (2) effectiveness, as measured by the ability of the algorithm to locate the Pareto set. Comparison of the MOCOM-UA algorithm against three multi-objective genetic algorithms (MOGAs) favors the former. In a realistic application, the MOCOM-UA algorithm is used to calibrate the Soil Moisture Accounting model of the National Weather Service River Forecasting Systems (NWSRFS-SMA). Multi-objective calibration of this model is accomplished using two bi-criterion objective functions, namely the Daily Root Mean Square-Heteroscedastic Maximum Likelihood Estimator (DRMS, HMLE) and rising limb-falling limb (RISE, FALL) objective functions. These two multi-objective calibrations provide some interesting insights into the influence of different objectives in the location of final parameter values as well as limitations in the structure of the NWSRFS-SMA model.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems and Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.