• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Laser-glint measurements of sea-surface roughness

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720579_sip1_c.pdf
    Size:
    12.78Mb
    Format:
    PDF
    Download
    Author
    Shaw, Joseph Alan, 1962-
    Issue Date
    1996
    Keywords
    Physics, Atmospheric Science.
    Physics, Optics.
    Remote Sensing.
    Advisor
    Reagan, John A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Optical glint patterns convey information about the roughness of the surface on which they are formed. This dissertation describes two new optical instruments that relate the variations of specular laser reflections (laser glints) from the sea surface in angular, temporal, and wavenumber space to the surface roughness. Measurements from these instruments are interpreted with the objective of improving the capabilities of remote-sensing instruments that view the ocean surface. Particular attention is paid to cm waves, which are resonant structures for microwave sensors and the most significant component of optical roughness. The scanning-laser glint meter counts laser glints in 1° angular bins over a ± 75° nadir-angle range. The video laser-glint imager is a CCD video camera that images glints from an array of diode lasers. Both instruments were deployed on the research platform FLIP in the Pacific Ocean near the Oregon coast for three weeks during September 1995. Normalized histograms of angular glint counts are interpreted as the probability density function (PDF) of sea-surface slope, a Gram-Charlier expansion of which facilitates studying the variation with wind speed and atmospheric stability of moments through order four. The PDF appears approximately Gaussian, but is skewed toward downwind slopes in the along-wind axis due to asymmetric wind waves. No skewness exists in the cross-wind axis. Slope PDFs also have positive peakedness, increasing the probability of very small and large slopes relative to a Gaussian. Surface roughness is shown to depend strongly on atmospheric stability, which is proportional to the air-water temperature difference. Both the mean-square slope and the peakedness increase with negative stability (water warmer than air) relative to the neutral-stability case (water and air temperatures equal). Increased surface roughness, due to increases in wind speed or negative stability, causes glint-count fractal dimensions to increase, glint-image power spectra to flatten, and glint-image autocorrelations to appear more wrinkled. Glint-image spectra are dominated by glint-size effects, which are related to surface curvature. New ways of modeling the interaction of electromagnetic waves with the ocean surface are suggested by the new fractal and spectral characterizations of surface roughness that are introduced here.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.