• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The application of SERS to the determination of relative adsorption strengths of nitrogen heterocycles on silver electrodes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720599_sip1_m.pdf
    Size:
    7.458Mb
    Format:
    PDF
    Download
    Author
    Carter, David Allen, 1958-
    Issue Date
    1996
    Keywords
    Chemistry, Analytical.
    Chemistry, Physical.
    Advisor
    Pemberton, Jeanne E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Research was undertaken to explore the application of surface enhanced Raman scattering (SERS) to the understanding of electrosorption phenomena. In particular, the relative strength of interactions between the functional groups of imidazole (N₁, N₂ and the π orbitals) on Ag electrodes was examined. This information is useful in understanding how the presence of these functional groups contributes to the relative adsorption strength of nitrogen heterocycles. A Raman spectrometer equipped with a charge-coupled device (CCD) detector was required to obtain reproducible SERS spectra in this research. It was also necessary to obtain accurate Raman shifts so that small (ca. 1-2 cm⁻¹ vibrational frequency changes between adsorbed and solution species could be detected. Therefore, significant effort was expended to develop calibration and spectral acquisition procedures which would provide acceptable accuracy and efficiency. Instrumental factors affecting Raman spectral calibration were studied. Available Raman shift calibration standards are reviewed and improved Raman shift data for these standards are reported. Several methods for the conversion of CCD position (pixel number) data to wavelength and Raman shifts are appraised using both experimental and simulated Raman data. SERS spectra for imidazole, 1-methylimidazole, and 2-methylimidazole support the conclusion that these molecules are adsorbed to the Ag electrode through the "pyridine nitrogen" (N₃). This evidence includes vibrational frequency shifts and orientations of these molecules deduced from the consideration of SERS surface selection rules. These data also suggest that the π orbital of the C=N bond interacts with the electrode at potentials near -0.25 V (versus SCE reference electrode) producing a tilt of the ring relative to the surface at these potentials. At potentials near the potential of zero charge (ca. -0.80 V), this interaction is minimized and these molecules assume a more vertical position. At the most negative potentials examined, the methylimidazoles interact with the surface predominantly through the methyl group. Preliminary work on the application of SERS to obtain surface coverage information was performed. An increase in SERS intensity with increasing solution concentration suggests adsorption isotherm-like behavior.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.